Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Sugiyama, D. Sakakibara, Satoshi Matsuno, S. Yamaguchi, S. Matoba, T. Aoki (2014)
Initial field observations on Qaanaaq ice cap, northwestern GreenlandAnnals of Glaciology, 55
J. Bader (2014)
Climate science: The origin of regional Arctic warmingNature, 509
C. Bøggild, R. Brandt, K. Brown, S. Warren (2010)
The ablation zone in northeast Greenland: ice types, albedos and impuritiesJournal of Glaciology, 56
K. Fujita, Y. Ageta (2000)
Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance modelJournal of Glaciology, 46
M. Ananicheva, A. Krenke, R. Barry (2010)
The Northeast Asia mountain glaciers in the near future by AOGCM scenariosThe Cryosphere, 4
M. New, D. Lister, M. Hulme, I. Makin (2002)
A high-resolution data set of surface climate over global land areasClimate Research, 21
L. Petersen, F. Pellicciotti (2011)
Spatial and temporal variability of air temperature on a melting glacier: Atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, ChileJournal of Geophysical Research, 116
S. Kohshima, K. Seko, Yoshitaka Yoshimura (1993)
Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya
B. Marzeion, A. Jarosch, Marlis Hofer (2012)
Past and future sea-level change from the surface mass balance of glaciersThe Cryosphere, 6
O. Solomina (2000)
Retreat of mountain glaciers of northern Eurasia since the Little Ice Age maximumAnnals of Glaciology, 31
A. Gardner, G. Moholdt, J. Cogley, B. Wouters, A. Arendt, J. Wahr, E. Berthier, R. Hock, W. Pfeffer, G. Kaser, S. Ligtenberg, T. Bolch, M. Sharp, J. Hagen, M. Broeke, F. Paul (2013)
A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009Science, 340
D. Bahr (1997)
Width and length scaling of glaciersJournal of Glaciology, 43
W. Immerzeel, L. Petersen, S. Ragettli, F. Pellicciotti (2014)
The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese HimalayasWater Resources Research, 50
D. Bahr, M. Meier, S. Peckham (1997)
The physical basis of glacier volume-area scalingJournal of Geophysical Research, 102
V. Radic, A. Bliss, A. Beedlow, R. Hock, Evan Miles, Evan Miles, J. Cogley (2013)
Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate modelsClimate Dynamics, 42
W. Haeberli, M. Hoelzle, F. Paul, M. Zemp (2007)
Integrated monitoring of mountain glaciers as key indicators of global climate change: the European AlpsAnnals of Glaciology, 46
J Bader (2014)
The origin of regional Arctic warmingNature, 509
J. Ming, C. Xiao, Feiteng Wang, Zhong-qin Li, Yaming Li (2016)
Grey Tienshan Urumqi Glacier No.1 and light-absorbing impuritiesEnvironmental Science and Pollution Research International, 23
Yong Zhang, H. Enomoto, T. Ohata, H. Kitabata, T. Kadota, Y. Hirabayashi (2016)
Projections of glacier change in the Altai Mountains under twenty-first century climate scenariosClimate Dynamics, 47
J. Oerlemans, R. Giesen, M. Broeke (2009)
Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland)Journal of Glaciology, 55
MM Koreisha (1963)
Present glaciers of the Suntar-Khayata Range
J. Ming, Yaqiang Wang, Zhencai Du, Tong Zhang, Wanqin Guo, C. Xiao, Xiaobin Xu, M. Ding, Dongqi Zhang, Wen Yang (2015)
Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st CenturyPLoS ONE, 10
N. Takeuchi (2013)
Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)Environmental Research Letters, 8
Yong Zhang, Y. Hirabayashi, Shi-yin Liu (2012)
Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan PlateauJournal of Hydrology, 444
Yong Zhang, Shi-yin Liu, Yongjian Ding (2006)
Observed degree-day factors and their spatial variation on glaciers in western ChinaAnnals of Glaciology, 43
Shuhei Takahashi, K. Sugiura, T. Kameda, H. Enomoto, Y. Kononov, M. Ananicheva, G. Kapustin (2011)
Response of glaciers in the Suntar–Khayata range, eastern Siberia, to climate changeAnnals of Glaciology, 52
M. Ananicheva, M. Koreisha, Shuhei Takahashi (2005)
Assessment of glacier shrinkage from the maximum in the Little Ice Age in the Suntar-Khayata Range, North-East SiberiaBulletin of glaciological research, 22
Y. Hirabayashi, P. Döll, S. Kanae (2010)
Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006Journal of Hydrology, 390
J. Oerlemans, J. Fortuin (1992)
Sensitivity of Glaciers and Small Ice Caps to Greenhouse WarmingScience, 258
A. Yatagai, K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, A. Kitoh (2012)
APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain GaugesBulletin of the American Meteorological Society, 93
A Arendt, A Bliss, T Bolch (2014)
Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 4.0
Tomomi Yamada, Shuhei Takahashi, T. Shiraiwa, Y. Fujii, Yuriy Kononov, M. Ananicheva, M. Koreisha, Y. Muravyev, Taras Samborsky (2002)
Reconnaissance on the No.31 Glacier in the Suntar-Khayata Range, Sakha Republic, Russian FederationBulletin of glaciological research, 19
DG Vaughan, JC Comiso, I Allison (2013)
Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
N. Takeuchi, Zhong-qin Li (2008)
Characteristics of Surface Dust on Ürümqi Glacier No. 1 in the Tien Shan Mountains, China, 40
A. Bliss, R. Hock, V. Radic (2014)
Global response of glacier runoff to twenty‐first century climate changeJournal of Geophysical Research: Earth Surface, 119
M. Dyurgerov, M. Meier (2010)
GLACIERS AND THE CHANGING EARTH SYSTEM: A 2004 SNAPSHOT
D. Roy, M. Wulder, T. Loveland, C. Woodcock, R. Allen, Martha Anderson, D. Helder, J. Irons, Daniel Johnson, R. Kennedy, T. Scambos, C. Schaaf, J. Schott, Y. Sheng, E. Vermote, A. Belward, R. Bindschadler, W. Cohen, F. Gao, J. Hipple, P. Hostert, J. Huntington, C. Justice, A. Kilic, V. Kovalskyy, Z. Lee, L. Lymburner, J. Masek, J. McCorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. Wynne, Zhe Zhu (2014)
Landsat-8: Science and Product Vision for Terrestrial Global Change ResearchRemote Sensing of Environment, 145
T. Shirakawa, T. Kadota, A. Fedorov, P. Konstantinov, Takafumi Suzuki, H. Yabuki, F. Nakazawa, Sota Tanaka, Masaya Miyairi, Y. Fujisawa, N. Takeuchi, Ryo Kusaka, Shuhei Takahashi, H. Enomoto, T. Ohata (2016)
Meteorological and glaciological observations at Suntar-Khayata Glacier No. 31, east Siberia, from 2012-2014Bulletin of glaciological research, 34
T. Tachikawa, M. Kaku, A. Iwasaki, D. Gesch, Michael Oimoen, Zhaoxiang Zhang, J. Danielson, T. Krieger, Bill Curtis, J. Haase, M. Abrams, C. Carabajal (2011)
ASTER Global Digital Elevation Model Version 2 - summary of validation results
MD Ananicheva (2010)
435The Cryosphere, 4
MD Ananicheva (2005)
9Bulletinof Glaciological Research, 22
G. Kaser, M. Grosshauser, B. Marzeion (2010)
Contribution potential of glaciers to water availability in different climate regimesProceedings of the National Academy of Sciences, 107
R. Hock (2003)
Temperature index melt modelling in mountain areasJournal of Hydrology, 282
Arendt, T. Bolch, J. Cogley, A. Gardner, J. Hagen, R. Hock, G. Kaser, W. Pfeffer, G. Moholdt, F. Paul, V. Radic, L. Andreassen, S. Bajracharya, M. Beedle, E. Berthier, R. Bhambri, A. Bliss, I. Brown, E. Burgess, D. Burgess, F. Cawkwell, T. Chinn, L. Copland, B. Davies, H. Angelis, E. Dolgova, K. Filbert, R. Forester, A. Fountain, H. Frey, B. Giffen, N. Glasser, S. Gurney, W. Hagg, D. Hall, U. Haritashya, G. Hartmann, C. Helm, S. Herreid, I. Howat, G. Kapustin, T. Khromova, C. Kienholz, M. Koenig, J. Kohler, D. Kriegel, S. Kutuzov, I. Lavrentiev, R. Lebris, J. Lund, W. Manley, C. Mayer, E. Miles, X. Li, B. Menounos, A. Mercer, N. Moelg, P. Mool, G. Nosenko, A. Negrete, C. Nuth, R. Pettersson, A. Racoviteanu (2013)
Randolph Glacier Inventory [v3.2]: A Dataset of Global Glacier Outlines. Global Land Ice Measurements from Space
J. Woodward, M. Sharp, A. Arendt (1997)
The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate changeAnnals of Glaciology, 24
N. Takeuchi, Y. Fujisawa, T. Kadota, Sota Tanaka, Masaya Miyairi, T. Shirakawa, Ryo Kusaka, A. Fedorov, P. Konstantinov, T. Ohata (2015)
The Effect of Impurities on the Surface Melt of a Glacier in the Suntar-Khayata Mountain Range, Russian SiberiaFrontiers in Earth Science, 3
N. Pepin, R. Bradley, H. Diaz, M. Baraer, E. Cáceres, N. Forsythe, H. Fowler, G. Greenwood, M. Hashmi, Xiao-dong Liu, J. Miller, L. Ning, A. Ohmura, E. Palazzi, I. Rangwala, W. Schöner, I. Severskiy, M. Shahgedanova, M. Wang, S. Williamson, D. Yang (2015)
Elevation-dependent warming in mountain regions of the worldNature Climate Change, 5
This study presents a 64-year (1951–2014) reconstruction of the surface mass balance of Glacier No. 31, located in the Suntar-Khayata Range of the eastern Siberia, where the ablation zone is characterized by the extensive dark ice surface. We use a temperature index-based glacier mass-balance model, which computes all major components of glacier mass budget and is forced by daily air temperature and precipitation from a nearby meteorological station. The glacier shows a mean annual mass balance of–0.35 m w.e.a–1 during the past 64 years, with an acceleration of–0.50 m w.e. a–1 during the recent years. A cumulative mass loss of the glacier is ~22.3 m w.e. over the study period, about 56% of which is observed during 1991–2014. In addition to the contribution of temperature rise and precipitation decrease to recent mass loss of the glacier, an experimental analysis, in which the clean and dark ice surfaces are respectively assumed to cover the entire ablation zone, indicates that dark ice surface, caused by insoluble impurities consisting of mineral dusts, cryoconite granules, and ice algae, plays a crucial role in the changing mass balance through enhancing melt rates in the ablation zone of the glacier.
Journal of Mountain Science – Springer Journals
Published: Mar 2, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.