Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract An effective method is proposed in this paper for the symplectic eigenvalue problem of a periodic structure with uniform stochastic properties. Since structural parameters are uncertain, the symplectic transfer matrix of a typical substructure, which is described in the state space, also has stochastic properties. An effective spectral stochastic finite element method is adopted to ensure the symplectic orthogonality of the random symplectic matrix on the premise of certain precision. By means of the Rayleigh quotient method, the symplectic eigenvalue problem of random symplectic matrix is investigated. On the basis of this, the mean value and the standard deviation of the random eigenvalues are fully discussed. The comparison between the numerical results derived from the proposed method and the Monte-Carlo simulation indicates that the proposed method has high precision. This research provides a useful guidance for the dynamic analysis of periodic structures with stochastic properties.
"Acta Mechanica Solida Sinica" – Springer Journals
Published: Jun 1, 2019
Keywords: Theoretical and Applied Mechanics; Surfaces and Interfaces, Thin Films; Classical Mechanics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.