Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Technological feasibility and costs of achieving a 50% reduction of global GHG emissions by 2050: mid- and long-term perspectives

Technological feasibility and costs of achieving a 50% reduction of global GHG emissions by 2050:... In this article we examine the technological feasibility of the global target of reducing GHG emissions to 50 % of the 1990 level by the year 2050. We also perform a detailed analysis of the contribution of low-carbon technologies to GHG emission reduction over mid- and long-term timeframes, and evaluate the required technological cost. For the analysis we use AIM/Enduse[Global], a techno-economic model for climate change mitigation policy assessment. The results show that a 50 % GHG emission reduction target is technically achievable. Yet achieving the target will require substantial emission mitigation efforts. The GHG emission reduction rate from the reference scenario stands at 23 % in 2020 and 73 % in 2050. The marginal abatement cost to achieve these emission reductions reaches $150/tCO2-eq in 2020 and $600/tCO2-eq in 2050. Renewable energy, fuel switching, and efficiency improvement in power generation account for 45 % of the total GHG emission reduction in 2020. Non-energy sectors, namely, fugitive emission, waste management, agriculture, and F-gases, account for 25 % of the total GHG emission reduction in 2020. CCS, solar power generation, wind power generation, biomass power generation, and biofuel together account for 64 % of the total GHG emission reduction in 2050. Additional investment in GHG abatement technologies for achieving the target reaches US$ 6.0 trillion by 2020 and US$ 73 trillion by 2050. This corresponds to 0.7 and 1.8 % of the world GDP, respectively, in the same periods. Non-Annex I regions account for 55 % of the total additional investment by 2050. In a sectoral breakdown, the power generation and transport sectors account for 56 and 30 % of the total additional investment by 2050, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sustainability Science Springer Journals

Technological feasibility and costs of achieving a 50% reduction of global GHG emissions by 2050: mid- and long-term perspectives

Sustainability Science , Volume 7 (2) – Apr 26, 2012

Loading next page...
 
/lp/springer-journals/technological-feasibility-and-costs-of-achieving-a-50-reduction-of-VusRvZQN0r

References (26)

Publisher
Springer Journals
Copyright
Copyright © 2012 by The Author(s)
Subject
Environment; Environmental Management; Climate Change Management and Policy; Environmental Economics; Landscape Ecology; Sustainable Development; Public Health
ISSN
1862-4065
eISSN
1862-4057
DOI
10.1007/s11625-012-0166-4
Publisher site
See Article on Publisher Site

Abstract

In this article we examine the technological feasibility of the global target of reducing GHG emissions to 50 % of the 1990 level by the year 2050. We also perform a detailed analysis of the contribution of low-carbon technologies to GHG emission reduction over mid- and long-term timeframes, and evaluate the required technological cost. For the analysis we use AIM/Enduse[Global], a techno-economic model for climate change mitigation policy assessment. The results show that a 50 % GHG emission reduction target is technically achievable. Yet achieving the target will require substantial emission mitigation efforts. The GHG emission reduction rate from the reference scenario stands at 23 % in 2020 and 73 % in 2050. The marginal abatement cost to achieve these emission reductions reaches $150/tCO2-eq in 2020 and $600/tCO2-eq in 2050. Renewable energy, fuel switching, and efficiency improvement in power generation account for 45 % of the total GHG emission reduction in 2020. Non-energy sectors, namely, fugitive emission, waste management, agriculture, and F-gases, account for 25 % of the total GHG emission reduction in 2020. CCS, solar power generation, wind power generation, biomass power generation, and biofuel together account for 64 % of the total GHG emission reduction in 2050. Additional investment in GHG abatement technologies for achieving the target reaches US$ 6.0 trillion by 2020 and US$ 73 trillion by 2050. This corresponds to 0.7 and 1.8 % of the world GDP, respectively, in the same periods. Non-Annex I regions account for 55 % of the total additional investment by 2050. In a sectoral breakdown, the power generation and transport sectors account for 56 and 30 % of the total additional investment by 2050, respectively.

Journal

Sustainability ScienceSpringer Journals

Published: Apr 26, 2012

There are no references for this article.