Technology-Augmented Perception and CognitionThe Effect of Neurofeedback Training in CAVE-VR for Enhancing Working Memory
Technology-Augmented Perception and Cognition: The Effect of Neurofeedback Training in CAVE-VR...
Accoto, Floriana; Vourvopoulos, Athanasios; Gonçalves, Afonso; Bucho, Teresa; Caetano, Gina; Figueiredo, Patrícia; De Paolis, Lucio; Badia, Sergi Bermudez i
2021-01-05 00:00:00
[In recent years, increasing evidence of the positive impact of Virtual Reality (VR) on neurofeedback training has emerged. The immersive properties of VR training scenarios have been shown to facilitate neurofeedback learning while leading to cognitive enhancements such as increased working memory performance. However, in the design of an immersive VR environment, there are several covariates that can influence the level of immersion. To date, the specific factors which contribute to the improvement of neurofeedback performance have not yet been clarified. This research aims to investigate the effects of vividness in a Cave automatic virtual environment (CAVE-VR) on neurofeedback training outcome, and to assess the effect on working memory performance. To achieve this, we recruited 21 participants, exposed to neurofeedback training inside a CAVE-VR environment. Participants were divided into three experimental groups, each of which received feedback in a different neurofeedback training scenario with increasing level of vividness (i.e., low, medium, high) while also assessing the effect of neurofeedback on working memory performance. Current findings show that highly vivid feedback in CAVE-VR results in increased neurofeedback performance. In addition, highly vivid training scenarios had a positive effect on user’s motivation, concentration, and reduced boredom. Finally, current results corroborate the efficacy of the neurofeedback enhancement protocol in CAVE-VR for improving working memory performance.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/technology-augmented-perception-and-cognition-the-effect-of-ceFEgQlBHz
Technology-Augmented Perception and CognitionThe Effect of Neurofeedback Training in CAVE-VR for Enhancing Working Memory
[In recent years, increasing evidence of the positive impact of Virtual Reality (VR) on neurofeedback training has emerged. The immersive properties of VR training scenarios have been shown to facilitate neurofeedback learning while leading to cognitive enhancements such as increased working memory performance. However, in the design of an immersive VR environment, there are several covariates that can influence the level of immersion. To date, the specific factors which contribute to the improvement of neurofeedback performance have not yet been clarified. This research aims to investigate the effects of vividness in a Cave automatic virtual environment (CAVE-VR) on neurofeedback training outcome, and to assess the effect on working memory performance. To achieve this, we recruited 21 participants, exposed to neurofeedback training inside a CAVE-VR environment. Participants were divided into three experimental groups, each of which received feedback in a different neurofeedback training scenario with increasing level of vividness (i.e., low, medium, high) while also assessing the effect of neurofeedback on working memory performance. Current findings show that highly vivid feedback in CAVE-VR results in increased neurofeedback performance. In addition, highly vivid training scenarios had a positive effect on user’s motivation, concentration, and reduced boredom. Finally, current results corroborate the efficacy of the neurofeedback enhancement protocol in CAVE-VR for improving working memory performance.]
Published: Jan 5, 2021
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.