Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Gaulton, F. Danson, G. Pearson, P. Lewis, M. Disney (2010)
The Salford Advanced Laser Canopy Analyser (SALCA): A multispectral full waveform LiDAR for improved vegetation characterisation
J. Widlowski, B. Pinty, M. Lopatka, C. Atzberger, D. Buzica, M. Chelle, M. Disney, J. Gastellu-Etchegorry, M. Gerboles, N. Gobron, E. Grau, He Huang, A. Kallel, Hideki Kobayashi, Philip Lewis, W. Qin, M. Schlerf, J. Stuckens, D. Xie (2013)
The fourth radiation transfer model intercomparison (RAMI‐IV): Proficiency testing of canopy reflectance models with ISO‐13528Journal of Geophysical Research: Atmospheres, 118
A. Strahler, D. Jupp, C. Woodcock, C. Schaaf, T. Yao, F. Zhao, Xiaoyuan Yang, J. Lovell, D. Culvenor, G. Newnham, Wenge Ni-Miester, William Boykin-Morris (2008)
Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®)Canadian Journal of Remote Sensing, 34
D. Kelbe, Paul Romanczyk, J. Aardt, K. Cawse‐Nicholson (2012)
Automatic extraction of tree stem models from single terrestrial lidar scans in structurally heterogeneous forest environments
P. Raumonen, E. Casella, K. Calders, S. Murphy, Markku Åkerblom, M. Kaasalainen (2015)
Massive-Scale Tree Modelling from Tls DataISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
P. Bunting, J. Armston, D. Clewley, R. Lucas (2013)
Sorted pulse data (SPD) library - Part II: A processing framework for LiDAR data from pulsed laser systems in terrestrial environmentsComput. Geosci., 56
Ewan Douglas, J. Martel, Zhan Li, Glenn Howe, K. Hewawasam, R. Marshall, C. Schaaf, T. Cook, G. Newnham, A. Strahler, S. Chakrabarti (2015)
Finding Leaves in the Forest: The Dual-Wavelength Echidna LidarIEEE Geoscience and Remote Sensing Letters, 12
K. Calders, J. Armston, G. Newnham, M. Herold, Nicholas Goodwin (2014)
Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDARAgricultural and Forest Meteorology, 194
M. Leeuwen, T. Hilker, N. Coops, G. Frazer, M. Wulder, G. Newnham, D. Culvenor (2011)
Assessment of standing wood and fiber quality using ground and airborne laser scanning: A reviewForest Ecology and Management, 261
(1996)
Evaluation of Santiago Declaration (Montreal Process) indicators of sustainability for Australian commercial forests: a New South Wales alpine ash forest as a case study
(2013)
Canopy biomass lidar (CBL) acquisitions at NEON and TERN forest sites
Xinlian Liang, J. Hyyppä, A. Kukko, H. Kaartinen, A. Jaakkola, Xiaowei Yu (2014)
The Use of a Mobile Laser Scanning System for Mapping Large Forest PlotsIEEE Geoscience and Remote Sensing Letters, 11
(2011)
Ground based and airborne lidar—a natural combination
A. Griebel, L. Bennett, D. Culvenor, G. Newnham, S. Arndt (2015)
Reliability and limitations of a novel terrestrial laser scanner for daily monitoring of forest canopy dynamicsRemote Sensing of Environment, 166
C. Schaaf, I. Paynter, E. Saenz, Zhan Li, A. Strahler, F. Peri, A. Erb, P. Raumonen, Jasmine Muir, Glenn Howe, K. Hewawasam, J. Martel, Ewan Douglas, S. Chakrabarti, T. Cook, M. Schaefer, G. Newnham, D. Jupp, J. Aardt, D. Kelbe, Paul Romanczyk, Jason Faulring (2014)
Using the Rapid-Scanning, Ultra-Portable, Canopy Biomass Lidar (CBL) Alone and In Tandem with the Full-Waveform Dual-Wavelength Echidna ® Lidar (DWEL) to Establish Forest Structure and Biomass Estimates in a Variety of Ecosystems, 2014
L. Prior, D. Bowman (2014)
Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperatureGlobal Change Biology, 20
(2004)
Terrestrial laser scanning — new perspectives in 3 D surveying
T. Yao, Xiaoyuan Yang, F. Zhao, Zhuosen Wang, Qingling Zhang, D. Jupp, J. Lovell, D. Culvenor, G. Newnham, W. Ni-Meister, C. Schaaf, C. Woodcock, Jindi Wang, Xiaowen Li, A. Strahler (2011)
Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidarRemote Sensing of Environment, 115
R. Nelson, W. Krabill, Gordon Maclean (1984)
Determining forest canopy characteristics using airborne laser dataRemote Sensing of Environment, 15
N. Pfeifer, B. Gorte, D. Winterhalder (2004)
AUTOMATIC RECONSTRUCTION OF SINGLE TREES FROM TERRESTRIAL LASER SCANNER DATA
H. Greaves, L. Vierling, J. Eitel, N. Boelman, T. Magney, C. Prager, K. Griffin (2015)
Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDARRemote Sensing of Environment, 164
J. Eitel, L. Vierling, T. Magney (2013)
A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamicsAgricultural and Forest Meteorology, 180
N. Breda (2003)
Ground-based measurements of leaf area index: a review of methods, instruments and current controversies.Journal of experimental botany, 54 392
Zhan Li, Ewan Douglas, A. Strahler, C. Schaaf, Xiaoyuan Yang, Zhuosen Wang, T. Yao, F. Zhao, E. Saenz, I. Paynter, C. Woodcock, S. Chakrabarti, T. Cook, J. Martel, Glenn Howe, D. Jupp, D. Culvenor, G. Newnham, J. Lovell (2013)
Separating leaves from trunks and branches with dual-wavelength terrestrial lidar scanning2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS
(2012)
Non-parametric point classification for phase-shift laser scanning. Canada: SilviLaser
K. Tansey, N. Selmes, A. Anstee, N. Tate, A. Denniss (2009)
Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner dataInternational Journal of Remote Sensing, 30
Jean-François Côté, R. Fournier, R. Egli (2011)
An architectural model of trees to estimate forest structural attributes using terrestrial LiDAREnviron. Model. Softw., 26
(1990)
Vegetation, In Australian soil and land survey field handbook, 2nd ed
(1999)
Integrated system for quickly and accurately imaging and modeling three dimensional objects
(1957)
The effect of stand conditions and angle size on plotless cruising basal area estimates in loblolly pine.
T. Toan, S. Quegan, M. Davidson, H. Balzter, P. Paillou, K. Papathanassiou, S. Plummer, F. Rocca, Sassan Saatchi, H. Shugart, L. Ulander (2011)
The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycleRemote Sensing of Environment, 115
Jean-François Côté, J. Widlowski, R. Fournier, M. Verstraete (2009)
The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidarRemote Sensing of Environment, 113
J. Lovell, D. Jupp, G. Newnham, D. Culvenor (2011)
Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpointIsprs Journal of Photogrammetry and Remote Sensing, 66
W. Burrows, B. Henry, P. Back, M. Hoffmann, L. Tait, E. Anderson, N. Menke, T. Danaher, J. Carter, G. McKeon (2002)
Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implicationsGlobal Change Biology, 8
F. Zhao, Xiaoyuan Yang, A. Strahler, C. Schaaf, T. Yao, Zhuosen Wang, M. Roman, C. Woodcock, W. Ni-Meister, D. Jupp, J. Lovell, D. Culvenor, G. Newnham, Hao Tang, R. Dubayah (2013)
A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar systemRemote Sensing of Environment, 136
J. Ryding, Emily Williams, Martin Smith, M. Eichhorn (2015)
Assessing Handheld Mobile Laser Scanners for Forest SurveysRemote. Sens., 7
Xiaoyuan Yang, C. Schaaf, A. Strahler, T. Kunz, Nathan Fuller, Margrit Betke, Zheng Wu, Zhuosen Wang, Diane Theriault, D. Culvenor, D. Jupp, G. Newnham, J. Lovell (2013)
Study of bat flight behavior by combining thermal image analysis with a LiDAR forest reconstructionCanadian Journal of Remote Sensing, 39
D. Seidel, S. Fleck, C. Leuschner (2012)
Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photographyAgricultural and Forest Meteorology, 154
C. Hopkinson, L. Chasmer, Colin Young-Pow, P. Treitz (2004)
Assessing forest metrics with a ground-based scanning lidarCanadian Journal of Forest Research, 34
N. Pfeifer, D. Winterhalder (2004)
Modelling of Tree Cross Sections from Terrestrial Laser Scanning Data with Free-form Curves
S. Sukwong, W. Frayer, E. Mogren (1971)
Generalized Comparisons of the Precision Fixed-Radius and Variable-Radius Plots for Basal-Area EstimatesForest Science, 17
J. Ross (1981)
The radiation regime and architecture of plant stands
(1955)
Results of an investigation of the variable plot method of cruising
F. Hosoi, Y. Nakai, K. Omasa (2013)
3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidarIsprs Journal of Photogrammetry and Remote Sensing, 82
A. Jackson (1911)
The Biltmore Stick and its Use on National ForestsJournal of Forestry, 9
M. Béland, D. Baldocchi, J. Widlowski, R. Fournier, M. Verstraete (2014)
On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDARAgricultural and Forest Meteorology, 184
D. Culvenor, G. Newnham, A. Mellor, N. Sims, A. Haywood (2014)
Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area IndexSensors (Basel, Switzerland), 14
R. Whittaker, G. Woodwell (1968)
DIMENSION AND PRODUCTION RELATIONS OF TREES AND SHRUBS IN THE BROOKHAVEN FOREST, NEW YORK.Journal of Ecology, 56
J. Liski, S. Kaasalainen, P. Raumonen, A. Akujärvi, A. Krooks, Anna Repo, M. Kaasalainen (2014)
Indirect emissions of forest bioenergy: detailed modeling of stump‐root systemsGCB Bioenergy, 6
M. Bosse, R. Zlot, Paul Flick (2012)
Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile MappingIEEE Transactions on Robotics, 28
M. Béland, J. Widlowski, R. Fournier, Jean-François Côté, M. Verstraete (2011)
Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurementsAgricultural and Forest Meteorology, 151
A. Ullrich, R. Reichert, N. Studnicka, J. Riegl (1999)
High-performance 3D-imaging laser sensor, 3707
R. Dubayah, S. Goetz, J. Blair, S. Luthcke, S. Healey, M. Hansen, M. Hofton, G. Hurtt, J. Kellner, T. Fatoyinbo, A. Swatantran, Kostos Papathanassiou (2014)
The Global Ecosystem Dynamics Investigation (GEDI) Lidar
Mark Dansona, Rachel Gaultonb, Richard Armitagea, Mathias Disneyc, Philip Lewisc, Guy Pearsone, Alberto Ramireza (2014)
Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structureAgricultural and Forest Meteorology, 198199
R. Lucas, A. Mitchell, J. Armston (2015)
Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensing at Large (Subnational to Global) ScalesCurrent Forestry Reports, 1
A. Laar, A. Akça (2007)
Remote Sensing In Forest Mensuration
E. Tomppo (2010)
National Forest Inventories : pathways for common reporting
P. Radtke, P. Bolstad (2001)
Laser point-quadrat sampling for estimating foliage-height profiles in broad-leaved forestsCanadian Journal of Forest Research, 31
E. Mitchard, S. Saatchi, A. Baccini, G. Asner, S. Goetz, N. Harris, Sandra Brown (2013)
Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical mapsCarbon Balance and Management, 8
M. Disney, Philip Lewis, J. Gómez-Dans, D. Roy, M. Wooster, D. Lajas (2011)
3D radiative transfer modelling of fire impacts on a two-layer savanna systemRemote Sensing of Environment, 115
T. Marthews, T. Riutta, C. Girardin, N. Butt, R. Cain, I. Menor, R. Urrutia, S. Moore, D. Metcalfe, Y. Malhi, O. Phillips, W. Huasco, M. Jaen (2015)
Measuring tropical forest carbon allocation and cycling
B. Wilson, C. Woodall, D. Griffith (2013)
Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverageCarbon Balance and Management, 8
A. Strahler, Xiaoyuan Yang, Zhan Li, C. Schaaf, Zhuosen Wang, T. Yao, F. Zhao, E. Saenz, I. Paynter, Ewan Douglas, S. Chakrabarti, T. Cook, J. Martel, Glenn Howe, K. Hewawasam, D. Jupp, D. Culvenor, G. Newnham, J. Lowell (2013)
Retrieving Leaf Area Index and Foliage Profiles Through Voxelized 3-D Forest Reconstruction Using Terrestrial Full-Waveform and Dual-Wavelength Echidna Lidars, 2013
D. Jupp, D. Culvenor, J. Lovell, G. Newnham, A. Strahler, C. Woodcock (2008)
Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'.Tree physiology, 29 2
T. Hakala, J. Suomalainen, S. Kaasalainen, Yuwei Chen (2012)
Full waveform hyperspectral LiDAR for terrestrial laser scanning.Optics express, 20 7
R. Gaulton, F. Danson, F. Ramirez, O. Gunawan (2013)
The potential of dual-wavelength laser scanning for estimating vegetation moisture contentRemote Sensing of Environment, 132
Richard Williams, A. Zerihun, K. Montagu, M. Hoffman, L. Hutley, Xiao‐Yong Chen (2005)
Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equationsAustralian Journal of Botany, 53
B. Jutzi, Uwe Stilla (2005)
Measuring and processing the waveform of laser pulses
P. Raumonen, M. Kaasalainen, Markku Åkerblom, S. Kaasalainen, H. Kaartinen, M. Vastaranta, M. Holopainen, M. Disney, Philip Lewis (2013)
Fast Automatic Precision Tree Models from Terrestrial Laser Scanner DataRemote. Sens., 5
G. Mégie (1985)
Laser Remote Sensing: Fundamentals and ApplicationsEos, Transactions American Geophysical Union, 66
K. Calders, Tom Schenkels, H. Bartholomeus, J. Armston, J. Verbesselt, M. Herold (2015)
Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurementsAgricultural and Forest Meteorology, 203
N. Pfeifer, C. Briese (2007)
Laser scanning – principles and applications
J. Welles, S. Cohen (1996)
Canopy structure measurement by gap fraction analysis using commercial instrumentationJournal of Experimental Botany, 47
F. Zhao, A. Strahler, C. Schaaf, T. Yao, Xiaoyuan Yang, Zhuosen Wang, M. Schull, M. Roman, C. Woodcock, P. Olofsson, W. Ni-Meister, D. Jupp, J. Lovell, D. Culvenor, G. Newnham (2012)
Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based LidarRemote Sensing of Environment, 125
C. Werner, J. Streicher (2005)
Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere
(2015)
Massive-scale tree mode l l i ng f r om TLS da t a . I SPRS Anna l s o f t h e Photogrammetry
Jan Hackenberg, Christopher Morhart, Jonathan Sheppard, H. Spiecker, M. Disney (2014)
Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method DescriptionForests, 5
Mario Miler, A. Đapo, B. Kordić, I. Medved (2007)
Terrestrial laser scanners
P. Pueschel, G. Newnham, J. Hill (2014)
Retrieval of Gap Fraction and Effective Plant Area Index from Phase-Shift Terrestrial Laser ScansRemote. Sens., 6
M. Dassot, A. Colin, P. Santenoise, M. Fournier, T. Constant (2012)
Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environmentComputers and Electronics in Agriculture, 89
P. Salo, O. Jokinen, A. Kukko (2008)
On the calibration of the distance measuring component of a terrestrial laser scanner
M. Disney, Philip Lewis, P. Saich (2006)
3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domainsRemote Sensing of Environment, 100
R. Macarthur, H. Horn (1969)
Foliage Profile by Vertical MeasurementsEcology, 50
W. Bechtold, P. Patterson (2005)
The enhanced forest inventory and analysis program - national sampling design and estimation proceduresStudies in Regional Science, 080
L. Grosenbaugh (1952)
Plotless Timber Estimates—New, Fast, EasyJournal of Forestry, 50
P. Bunting, J. Armston, R. Lucas, D. Clewley (2013)
Sorted pulse data (SPD) library. Part I: A generic file format for LiDAR data from pulsed laser systems in terrestrial environmentsComput. Geosci., 56
J. Chave, M. Réjou‐Méchain, A. Búrquez, E. Chidumayo, M. Colgan, W. Delitti, Á. Duque, T. Eid, P. Fearnside, R. Goodman, M. Henry, A. Martínez-Yrizar, W. Mugasha, H. Muller‐Landau, Maurizio Mencuccini, B. Nelson, A. Ngomanda, E. Nogueira, E. Ortiz-Malavassi, R. Pélissier, P. Ploton, C. Ryan, J. Saldarriaga, G. Vieilledent (2014)
Improved allometric models to estimate the aboveground biomass of tropical treesGlobal Change Biology, 20
K. Calders, G. Newnham, A. Burt, S. Murphy, P. Raumonen, M. Herold, D. Culvenor, V. Avitabile, M. Disney, J. Armston, M. Kaasalainen (2015)
Nondestructive estimates of above‐ground biomass using terrestrial laser scanningMethods in Ecology and Evolution, 6
G. Campbell (1986)
Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distributionAgricultural and Forest Meteorology, 36
A. Burt, M. Disney, P. Raumonen, J. Armston, K. Calders, Philip Lewis (2013)
Rapid characterisation of forest structure from TLS and 3D modelling2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS
T. Aschoff, H. Spiecker (2004)
Algorithms for the Automatic Detection of Trees in Laser Scanner Data
W. Bitterlich (1952)
Die WinkelzählprobeForstwissenschaftliches Centralblatt, 71
S. Hancock, R. Essery, T. Reid, J. Carle, R. Baxter, N. Rutter, B. Huntley (2014)
Characterising forest gap fraction with terrestrial lidar and photography: An examination of relative limitationsAgricultural and Forest Meteorology, 189
P. Pueschel, G. Newnham, Gilles Rock, T. Udelhoven, W. Werner, J. Hill (2013)
The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scansIsprs Journal of Photogrammetry and Remote Sensing, 77
(2004)
Terrestrial laser scanning—new perspectives in 3D surveying. Int archives photogrammetry, remote sensing spatial information sci
G. Newnham, J. Armston, Jasmine Muir, Nicholas Goodwin, D. Culvenor, Pyare Puschel, Mattias Nystrom, K. Johansen (2012)
Evaluation of terrestrial laser scanners for measuring vegetation structure
T. Hilker, N. Coops, D. Culvenor, G. Newnham, M. Wulder, C. Bater, A. Siggins (2012)
A simple technique for co-registration of terrestrial LiDAR observations for forestry applicationsRemote Sensing Letters, 3
M. Leeuwen, N. Coops, T. Hilker, M. Wulder, G. Newnham, D. Culvenor (2013)
Automated reconstruction of tree and canopy structure for modeling the internal canopy radiation regimeRemote Sensing of Environment, 136
M. Monsi, T. Saeki (2004)
On the factor light in plant communities and its importance for matter production. 1953.Annals of botany, 95 3
Xiaoyuan Yang, A. Strahler, C. Schaaf, D. Jupp, T. Yao, F. Zhao, Zhuosen Wang, D. Culvenor, G. Newnham, J. Lovell, R. Dubayah, C. Woodcock, W. Ni-Meister (2013)
Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®)Remote Sensing of Environment, 135
J. Chave, Ae Andalo, Ae Brown, Ae Cairns, J. Chambers, A. Eamus, Ae Foïster, Ae Fromard, N. Higuchi, Ae Kira, J. Lescure, Ae Nelson, H. Ogawa, Ae Puig, Ae Rie´ra, Ae Yamakura, S. Brown, M. Cairns, D. Eamus, H. Foïster, F. Fromard, T. Kira, B. Rie´ra (2005)
Tree allometry and improved estimation of carbon stocks and balance in tropical forestsOecologia, 145
J. Lovell, D. Jupp, D. Culvenor, N. Coops (2003)
Using airborne and ground-based ranging lidar to measure canopy structure in Australian forestsCanadian Journal of Remote Sensing, 29
A. Bienert, S. Scheller, E. Keane, F. Mohan, C. Nugent (2007)
TREE DETECTION AND DIAMETER ESTIMATIONS BY ANALYSIS OF FOREST TERRESTRIAL LASERSCANNER POINT CLOUDS
J. Henning, P. Radtke (2006)
Detailed Stem Measurements of Standing Trees from Ground-Based Scanning LidarForest Science, 52
S. Oberthür, Hermann Ott, R. Tarasofsky, E. Weizsäcker (1999)
The Kyoto protocol : international climate policy for the 21st century
Plot-scale measurements have been the foundation for forest surveys and reporting for over 200 years. Through recent integration with airborne and satellite remote sensing, manual measurements of vegetation structure at the plot scale are now the basis for landscape, continental and international mapping of our forest resources. The use of terrestrial laser scanning (TLS) for plot-scale measurement was first demonstrated over a decade ago, with the intimation that these instruments could replace manual measurement methods. This has not yet been the case, despite the unparalleled structural information that TLS can capture. For TLS to reach its full potential, these instruments cannot be viewed as a logical progression of existing plot-based measurement. TLS must be viewed as a disruptive technology that requires a rethink of vegetation surveys and their application across a wide range of disciplines. We review the development of TLS as a plot-scale measurement tool, including the evolution of both instrument hardware and key data processing methodologies. We highlight two broad data modelling approaches of gap probability and geometrical modelling and the basic theory that underpins these. Finally, we discuss the future prospects for increasing the utilisation of TLS for plot-scale forest assessment and forest monitoring.
Current Forestry Reports – Springer Journals
Published: Oct 27, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.