Access the full text.
Sign up today, get DeepDyve free for 14 days.
The classical Conley index for flows is defined as a certain homotopy type. In the case of a discrete dynamical system, one usually considers the shift equivalence class of the so-called index map. This equivalence relation is rarely used in other contexts and not well understood in general. Here we propose using a topological invariant of the shift equivalence definition: The homotopy type of the mapping torus of the index map. Using a homotopy type offers new ways for comparing Conley indices–theoretically and numerically. We present some basic properties and examples, compare it to the definition via shift equivalence and sketch an idea for its construction using rigorous numerics.
Journal of Applied and Computational Topology – Springer Journals
Published: Jun 18, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.