Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Cox Model and Its ApplicationsThe Simple Cross-Effect Model

The Cox Model and Its Applications: The Simple Cross-Effect Model [Let SX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{X}(t)$$\end{document}, λX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{X}(t)$$\end{document}, and ΛX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _{X}(t)$$\end{document} be the survival, hazard rate, and cumulative hazard functions under a p-dimensional time-dependent covariate X.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The Cox Model and Its ApplicationsThe Simple Cross-Effect Model

Loading next page...
 
/lp/springer-journals/the-cox-model-and-its-applications-the-simple-cross-effect-model-o0jrzwBwJa
Publisher
Springer Berlin Heidelberg
Copyright
© The Author(s) 2016
ISBN
978-3-662-49331-1
Pages
71 –79
DOI
10.1007/978-3-662-49332-8_6
Publisher site
See Chapter on Publisher Site

Abstract

[Let SX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{X}(t)$$\end{document}, λX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{X}(t)$$\end{document}, and ΛX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _{X}(t)$$\end{document} be the survival, hazard rate, and cumulative hazard functions under a p-dimensional time-dependent covariate X.]

Published: Apr 12, 2016

Keywords: Hazard Rate; Cumulative Hazard; Cumulative Hazard Function; Constant Covariates; Baseline Cumulative Hazard

There are no references for this article.