Access the full text.
Sign up today, get DeepDyve free for 14 days.
Thermoelastic damping (TED) is one of the main internal energy dissipation mechanisms in micro-/nano-resonators. Accurate evaluation of TED is important in the design of micro-electromechanical systems and nano-electromechanical systems. In this paper, a theoretical analysis on the TED in functionally graded material (FGM) micro-beam resonators is presented. Equations of motion and the heat conduction equation governing the thermodynamic coupling free vibration of non-homogenous micro-beams are established based on the Euler–Bernoulli beam theory associated with the modified couple stress theory. Material properties of the FGM micro-beam are assumed to change in the depth direction as power-law functions. The layer-wise homogenization method is used for solving the heat conduction equation. By using the mathematical similarity of eigenvalue problem between the FGM beam and the reference homogeneous one, the complex natural frequency including TED is expressed in terms of the natural frequency of the isothermal homogenous beam. In the presented numerical results, influences of various characteristic parameters, such as beam thickness, material gradient index, structure size, vibration mode and boundary conditions, on TED are examined in detail. It shows that TED decreases with the increases in the values of length scale parameters because the latter lead to the increase in structural stiffness.
"Acta Mechanica Solida Sinica" – Springer Journals
Published: Aug 2, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.