Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The characteristics of time expressions drive us to design a learning-based method named TOMN to model time expressions. TOMN defines a constituent-based tagging scheme named TOMN scheme with four tags, namely T, O, M, and N, indicating the constituents of time expression, namely Time token, Modifier, Numeral, and the words Outside time expression. In modeling, TOMN assigns a word with a TOMN tag under conditional random fields with minimal features. Essentially, our constituent-based TOMN scheme overcomes the problem of inconsistent tag assignment that is caused by the conventional position-based tagging schemes (e.g., BIO scheme and BILOU scheme). Evaluation shows that TOMN is equally or more effective than state-of-the-art methods on various datasets, and much more robust on cross-datasets.]
Published: Jun 7, 2021
Keywords: Constituent-based tagging scheme; Position-based tagging scheme; Inconsistent tag assignment
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.