Access the full text.
Sign up today, get DeepDyve free for 14 days.
Algebraic/topological descriptions of living processes are indispensable to the understanding of both biological and cognitive functions. This paper presents a fundamental algebraic description of living/cognitive processes and exposes its inherent ambiguity. Since ambiguity is forbidden to computation, no computational description can lend insight to inherently ambiguous processes. The impredicativity of these models is not a flaw, but is, rather, their strength. It enables us to reason with ambiguous mathematical representations of ambiguous natural processes. The noncomputability of these structures means computerized simulacra of them are uninformative of their key properties. This leads to the question of how we should reason about them. That question is answered in this paper by presenting an example of such reasoning, the demonstration of a topological strategy for understanding how the fundamental structure can form itself from within itself.
Axiomathes – Springer Journals
Published: Oct 23, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.