Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tracking Cryptosporidium in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity

Tracking Cryptosporidium in urban wastewater treatment plants in a cold region: Occurrence,... This study investigated the occurrence, species, infectivity and removal efficiency of Cryptosporidium spp. across typical wastewater treatment train. Samples from different process units were collected seasonally and synchronously from four wastewater treatment plants (WWTPs) in Northeastern China. Live Cryptosporidium oocysts were identified in most samples from both influent (97.50%) and effluent (90.00%) wastewaters of the four WWTPs, at an average density of 26.34 and 4.15 oocysts/L, respectively. The overall removal efficiency was 84.25%, and oocysts were mainly removed (62.01%) by the modified secondary sedimentation process. Ten Cryptosporidium species were identified in the effluent samples. C. andersoni, C. bovis, and C. ryanae were the three most prevalent species. Oocyst viability assays indicated no reduction of excystation rate during the primary and secondary wastewater treatments (varied in the range of 63.08%–68.50%), but the excystation rate declined to 52.21% in the effluent after disinfection. Notably, the Cryptosporidium oocysts showed higher infection intensity in the cold season (winter and spring) than that in summer and autumn. The influences of environmental temperature on virulence factors of Cryptosporidium were further examined. It was observed that more extracellular secretory proteins were bound on the oocyst surface and several virulence genes were expressed relatively strongly at low temperatures, both of which could facilitate oocyst adhesion, invasion, and host immune evasion. This research is of considerable interest since it serves as an important step towards more accurate panoramic recognition of Cryptosporidium risk reduction in WWTPs, and especially highlights the potential health risk associated with Cryptosporidium in cold regions/seasons.[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Frontiers of Environmental Science & Engineering Springer Journals

Tracking Cryptosporidium in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity

Loading next page...
 
/lp/springer-journals/tracking-cryptosporidium-in-urban-wastewater-treatment-plants-in-a-Dufwr37coG

References (128)

Publisher
Springer Journals
Copyright
Copyright © Higher Education Press 2022
ISSN
2095-2201
eISSN
2095-221X
DOI
10.1007/s11783-022-1533-8
Publisher site
See Article on Publisher Site

Abstract

This study investigated the occurrence, species, infectivity and removal efficiency of Cryptosporidium spp. across typical wastewater treatment train. Samples from different process units were collected seasonally and synchronously from four wastewater treatment plants (WWTPs) in Northeastern China. Live Cryptosporidium oocysts were identified in most samples from both influent (97.50%) and effluent (90.00%) wastewaters of the four WWTPs, at an average density of 26.34 and 4.15 oocysts/L, respectively. The overall removal efficiency was 84.25%, and oocysts were mainly removed (62.01%) by the modified secondary sedimentation process. Ten Cryptosporidium species were identified in the effluent samples. C. andersoni, C. bovis, and C. ryanae were the three most prevalent species. Oocyst viability assays indicated no reduction of excystation rate during the primary and secondary wastewater treatments (varied in the range of 63.08%–68.50%), but the excystation rate declined to 52.21% in the effluent after disinfection. Notably, the Cryptosporidium oocysts showed higher infection intensity in the cold season (winter and spring) than that in summer and autumn. The influences of environmental temperature on virulence factors of Cryptosporidium were further examined. It was observed that more extracellular secretory proteins were bound on the oocyst surface and several virulence genes were expressed relatively strongly at low temperatures, both of which could facilitate oocyst adhesion, invasion, and host immune evasion. This research is of considerable interest since it serves as an important step towards more accurate panoramic recognition of Cryptosporidium risk reduction in WWTPs, and especially highlights the potential health risk associated with Cryptosporidium in cold regions/seasons.[graphic not available: see fulltext]

Journal

Frontiers of Environmental Science & EngineeringSpringer Journals

Published: Sep 1, 2022

Keywords: WWTPs; Cryptosporidium; Occurrence; Species; Infectivity; Low temperature

There are no references for this article.