Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Trees and Insects Have Microbiomes: Consequences for Forest Health and Management

Trees and Insects Have Microbiomes: Consequences for Forest Health and Management Purpose of ReviewForest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale.Recent FindingsMultiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies.SummaryTo achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Forestry Reports Springer Journals

Trees and Insects Have Microbiomes: Consequences for Forest Health and Management

Loading next page...
 
/lp/springer-journals/trees-and-insects-have-microbiomes-consequences-for-forest-health-and-8KlN0o0PX4

References (221)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
eISSN
2198-6436
DOI
10.1007/s40725-021-00136-9
Publisher site
See Article on Publisher Site

Abstract

Purpose of ReviewForest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale.Recent FindingsMultiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies.SummaryTo achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions.

Journal

Current Forestry ReportsSpringer Journals

Published: Jun 1, 2021

Keywords: Forest tree; Insect herbivore; Microbial community; Ecological interaction; Fungal endophyte; Insect symbiont

There are no references for this article.