Access the full text.
Sign up today, get DeepDyve free for 14 days.
In nonlinear time series analysis and dynamical systems theory, Takens’ embedding theorem states that the sliding window embedding of a generic observation along trajectories in a state space, recovers the region traversed by the dynamics. This can be used, for instance, to show that sliding window embeddings of periodic signals recover topological loops, and that sliding window embeddings of quasiperiodic signals recover high-dimensional torii. However, in spite of these motivating examples, Takens’ theorem does not in general prescribe how to choose such an observation function given particular dynamics in a state space. In this work, we state conditions on observation functions defined on compact Riemannian manifolds, that lead to successful reconstructions for particular dynamics. We apply our theory and construct families of time series whose sliding window embeddings trace tori, Klein bottles, spheres, and projective planes. This greatly enriches the set of examples of time series known to concentrate on various shapes via sliding window embeddings, and will hopefully help other researchers in identifying them in naturally occurring phenomena. We also present numerical experiments showing how to recover low dimensional representations of the underlying dynamics on state space, by using the persistent cohomology of sliding window embeddings and Eilenberg–MacLane (i.e. circular and real projective) coordinates.
Journal of Applied and Computational Topology – Springer Journals
Published: Aug 16, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.