Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Multi-relational networks (in short as MRNs) refer to such networks including one-typed nodes but associated with each other in poly-relations. MRNs are prevalent in the real world. For example, interactions in social networks include various kinds of information diffusion: email exchange, instant messaging services and so on. Community detection is a long-standing yet very difficult task in social network analysis, especially when meeting MRNs. This chapter gradually explores the research into discovering communities from MRNs. It begins by introducing the generalized modularity of the MRN, which paves the way for applying modularity optimization-based community detection methods on MRNs. However, the mainstream methods for discovering communities on MRNs are to integrate information from multiple dimensions. The existing integration methods fall into four categories: network integration, utility integration, feature integration, and partition integration. Learning or ranking the weight for each relation in MRN constitutes building blocks of network, utility and feature integrations. Thus, we turn our attention into several co-ranking frameworks on MRNs. We then discuss two different kinds of partition integration strategies, including the frequent pattern mining based method and the consensus clustering based method. Finally, for the purpose of conducting performance validation, we present several techniques for constructing the MRN based on both multivariate data and forum data.]
Published: Oct 29, 2015
Keywords: Multi-relational Networks (MRN); Integral Partition; Consensus Clustering; Community Detection Methods; Utility Integral
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.