Access the full text.
Sign up today, get DeepDyve free for 14 days.
Henry Adams, Joshua Mirth (2017)
Metric thickenings of Euclidean submanifoldsTopology and its Applications
Mridul Aanjaneya, F. Chazal, Daniel Chen, M. Glisse, L. Guibas, D. Morozov (2011)
Metric graph reconstruction from noisy dataInt. J. Comput. Geom. Appl., 22
Brittany Fasy, R. Komendarczyk, S. Majhi, C. Wenk (2018)
On the Reconstruction of Geodesic Subspaces of ℝNInt. J. Comput. Geom. Appl., 32
T. Dey, Jiayuan Wang, Yusu Wang (2018)
Graph Reconstruction by Discrete Morse TheoryArXiv, abs/1803.05093
Michal Adamaszek, Henry Adams, F. Frick (2017)
Metric Reconstruction Via Optimal TransportSIAM J. Appl. Algebra Geom., 2
H Adams (2019)
69Topol. Appl., 254
Stefan Friedl (2020)
Algebraic topologyGraduate Studies in Mathematics
H. Edelsbrunner (2009)
Alpha Shapes — a Survey
L. Vietoris (1927)
Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen AbbildungenMathematische Annalen, 97
D. Attali, A. Lieutier, David Salinas (2011)
Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes
D. Burago, Yu. Burago, S. Ivanov (2001)
A Course in Metric Geometry
V. Silva (2003)
A Weak Definition of Delaunay Triangulation
Usgs earthquake hazards program
Jisu Kim, Jaehyeok Shin, F. Chazal, A. Rinaldo, L. Wasserman (2019)
Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex
F. Lecci, A. Rinaldo, L. Wasserman (2013)
Statistical analysis of metric graph reconstructionJ. Mach. Learn. Res., 15
E. Chambers, V. Silva, Jeff Erickson, R. Ghrist (2009)
Vietoris–Rips Complexes of Planar Point SetsDiscrete & Computational Geometry, 44
J. Munkres (1984)
Elements of algebraic topology
J. Hausmann (1996)
On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces
(1987)
Hyperbolic Groups, pages 75–263
J. Latschev (2001)
Vietoris-Rips complexes of metric spaces near a closed Riemannian manifoldArchiv der Mathematik, 77
BT Fasy, R Komendarczyk, S Majhi, C Wenk (2022)
On the reconstruction of geodesic subspaces of Rn\documentclass[12pt]{minimal}Int. J. Comput. Geom. Appl., 32
F. Chazal, S. Oudot (2007)
Towards persistence-based reconstruction in euclidean spaces
M Aanjaneya (2012)
305Int. J. Comput. Geom. Appl., 22
M Adamaszek (2018)
597SIAM J. Appl. Algeb. Geom., 2
M. Ahmed, Brittany Fasy, Matt Gibson, C. Wenk (2015)
Choosing thresholds for density-based map construction algorithmsProceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems
For a sufficiently small scale β>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta >0$$\end{document}, the Vietoris–Rips complex Rβ(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {R}_\beta (S)$$\end{document} of a metric space S with a small Gromov–Hausdorff distance to a closed Riemannian manifold M has been already known to recover M up to homotopy type. While the qualitative result is remarkable and generalizes naturally to the recovery of spaces beyond Riemannian manifolds—such as geodesic metric spaces with a positive convexity radius—the generality comes at a cost. Although the scale parameter β\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta $$\end{document} is known to depend only on the geometric properties of the geodesic space, how to quantitatively choose such a β\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta $$\end{document} for a given geodesic space is still elusive. In this work, we focus on the topological recovery of a special type of geodesic space, called a metric graph. For an abstract metric graph G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {G}$$\end{document} and a (sample) metric space S with a small Gromov–Hausdorff distance to it, we provide a description of β\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta $$\end{document} based on the convexity radius of G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {G}$$\end{document} in order for Rβ(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {R}_\beta (S)$$\end{document} to be homotopy equivalent to G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {G}$$\end{document}. Our investigation also extends to the study of the Vietoris–Rips complexes of a Euclidean subset S⊂Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S\subset \mathbb {R}^d$$\end{document} with a small Hausdorff distance to an embedded metric graph G⊂Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {G}\subset \mathbb {R}^d$$\end{document}. From the pairwise Euclidean distances of points of S, we introduce a family (parametrized by ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon $$\end{document}) of path-based Vietoris–Rips complexes Rβε(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {R}^\varepsilon _\beta (S)$$\end{document} for a scale β>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta >0$$\end{document}. Based on the convexity radius and distortion of the embedding of G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {G}$$\end{document}, we show how to choose a suitable parameter ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon $$\end{document} and a scale β\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta $$\end{document} such that Rβε(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {R}^\varepsilon _\beta (S)$$\end{document} is homotopy equivalent to G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {G}$$\end{document}.
Journal of Applied and Computational Topology – Springer Journals
Published: Dec 1, 2023
Keywords: Vietoris–Rips complex; Metric graphs; Graph reconstruction; 55P10; 55N31; 54E35
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.