Access the full text.
Sign up today, get DeepDyve free for 14 days.
Daniel Dugger, Daniel Isaksen (2004)
Topological hypercovers and 1-realizationsMathematische Zeitschrift, 246
Henry Adams, Johnathan Bush, F. Frick (2021)
The Topology of Projective Codes and the Distribution of Zeros of Odd MapsMichigan Mathematical Journal
Žiga Virk (2017)
1-Dimensional intrinsic persistence of geodesic spacesJournal of Topology and Analysis
F. Chazal, V. Silva, S. Oudot (2012)
Persistence stability for geometric complexesGeometriae Dedicata, 173
Nguyễn Như, Ta Cu (1989)
Probability measure functors preserving the ANR-property of metric spaces, 106
V. Bogachev (2018)
Weak convergence of measures on ℝ^{𝕕}Weak Convergence of Measures
(2018)
On spectral sequences arising from topological covers. Unpublished notes
M Adamaszek, H Adams (2017)
The Vietoris?Rips complexes of a circlePac. J. Math., 290
Ž. Virk (2021)
A Counter-Example to Hausmann’s ConjectureFoundations of Computational Mathematics, 22
A. Nag'orko (2005)
Carrier and nerve theorems in the extension theory, 135
Matthew Zaremsky (2018)
Bestvina–Brady discrete Morse theory and Vietoris–Rips complexesAmerican Journal of Mathematics, 144
Günter Rote, Gert Vegter (2007)
Effective Computational Geometry for Curves and Surfaces Chapter 7 Computational Topology : An Introduction
H. Edelsbrunner, D. Letscher, A. Zomorodian (2000)
Topological Persistence and SimplificationDiscrete & Computational Geometry, 28
C. Villani (2008)
Optimal Transport: Old and New
P. Gillespie (2022)
A homological nerve theorem for open covers
M. Katz (1989)
Diameter-extremal subsets of spheresDiscrete & Computational Geometry, 4
Henry Adams, Facundo M'emoli, Michael Moy, Qingsong Wang (2021)
The Persistent Topology of Optimal Transport Based Metric Thickenings
Michal Adamaszek, Henry Adams, F. Frick, C. Peterson, Corrine Previte-Johnson (2014)
Nerve Complexes of Circular ArcsDiscrete & Computational Geometry, 56
Sunhyuk Lim, F. Mémoli, Osman Okutan (2020)
Vietoris-Rips Persistent Homology, Injective Metric Spaces, and The Filling RadiusArXiv, abs/2001.07588
A. Zomorodian, G. Carlsson (2004)
Computing Persistent HomologyDiscrete & Computational Geometry, 33
J. Latschev (2001)
Vietoris-Rips complexes of metric spaces near a closed Riemannian manifoldArchiv der Mathematik, 77
C. Villani (2003)
Topics in Optimal Transportation
A. Björner (2003)
Nerves, fibers and homotopy groupsJ. Comb. Theory, Ser. A, 102
André Well (1952)
Sur les théorèmes de de RhamCommentarii Mathematici Helvetici, 26
M Adamaszek (2017)
1Pac. J. Math., 290
(2022)
Persistence stability for metric thickenings. Master’s thesis, Colorado State University
E. Zeeman (1962)
Dihomology: I. Relations Between Homology TheoriesProceedings of The London Mathematical Society
K. Borsuk (1948)
On the imbedding of systems of compacta in simplicial complexesFundamenta Mathematicae, 35
(2016)
Micha(cid:32)l
M Adamaszek (2016)
251Discrete Comput. Geom., 56
Henry Adams, Joshua Mirth (2017)
Metric thickenings of Euclidean submanifoldsTopology and its Applications
Email address : frick@cmu.edu (ˇZV) Faculty
Michal Adamaszek (2011)
Clique complexes and graph powersIsrael Journal of Mathematics, 196
L. Evens (1991)
Cohomology of groups
Michal Adamaszek, Henry Adams, F. Frick (2017)
Metric Reconstruction Via Optimal TransportSIAM J. Appl. Algebra Geom., 2
Marc Alexa, Michael Kazhdan, F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, S. Oudot
Eurographics Symposium on Geometry Processing 2009 Gromov-hausdorff Stable Signatures for Shapes Using Persistence
Stefan Friedl (2020)
Algebraic topologyGraduate Studies in Mathematics
P. Niyogi, S. Smale, S. Weinberger (2008)
Finding the Homology of Submanifolds with High Confidence from Random SamplesDiscrete & Computational Geometry, 39
D. Cohen-Steiner, H. Edelsbrunner, J. Harer (2005)
Stability of Persistence DiagramsDiscrete & Computational Geometry, 37
Michal Adamaszek, Henry Adams (2015)
The Vietoris-Rips complexes of a circleArXiv, abs/1503.03669
Matthew Wright (2016)
Introduction to Persistent Homology
Karol Borsuk (1932)
Über eine Klasse von lokal zusammenhängenden RäumenFundamenta Mathematicae, 19
R. Fritsch, R. Piccinini (1990)
Cellular structures in topology
Michael Moy (2022)
Vietoris–Rips metric thickenings of the circleJournal of Applied and Computational Topology
G. Carlsson (2009)
Topology and dataBulletin of the American Mathematical Society, 46
Henry Adams, Baris Coskunuzer (2021)
Geometric Approaches on Persistent HomologySIAM J. Appl. Algebra Geom., 6
Henry Adams, Johnathan Bush, F. Frick (2019)
METRIC THICKENINGS, BORSUK–ULAM THEOREMS, AND ORBITOPESMathematika
Žiga Virk (2019)
Rips Complexes as Nerves and a Functorial Dowker-Nerve DiagramMediterranean Journal of Mathematics, 18
Žiga Virk (2021)
Footprints of Geodesics in Persistent HomologyMediterranean Journal of Mathematics, 19
R. Bott, L. Tu (1982)
Differential forms in algebraic topology, 82
Žiga Virk (2017)
Approximations of 1-dimensional intrinsic persistence of geodesic spaces and their stabilityRevista Matemática Complutense, 32
J. Hausmann (1996)
On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces
M Adamaszek (2018)
597SIAM J. Appl. Algebra Geom., 2
M. Katz (1991)
On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functionalFundamenta Mathematicae, 137
M Adamaszek (2013)
295Isr. J. Math., 196
C. Dowker (1952)
TOPOLOGY OF METRIC COMPLEXES.American Journal of Mathematics, 74
Compositio Mathematica, T. Dieck (2019)
Partitions of unity in homotopy theory
A. Vershik (2013)
Long History of the Monge-Kantorovich Transportation ProblemThe Mathematical Intelligencer, 35
Ellen Gasparovic, Maria Gommel, Emilie Purvine, R. Sazdanovic, Bei Wang, Yusu Wang, Lori Ziegelmeier (2017)
A Complete Characterization of the One-Dimensional Intrinsic Čech Persistence Diagrams for Metric GraphsarXiv: Algebraic Topology
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
We study the relationship between metric thickenings and simplicial complexes associated to coverings of metric spaces. Let U\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {U}}$$\end{document} be a cover of a separable metric space X by open sets with a uniform diameter bound. The Vietoris complex V(U)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {V}}({\mathcal {U}})$$\end{document} contains all simplices with vertex set contained in some U∈U\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$U \in {\mathcal {U}}$$\end{document}, and the Vietoris metric thickening Vm(U)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {V}}^\textrm{m}({\mathcal {U}})$$\end{document} is the space of probability measures with support in some U∈U\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$U \in {\mathcal {U}}$$\end{document}, equipped with an optimal transport metric. We show that Vm(U)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {V}}^\textrm{m}({\mathcal {U}})$$\end{document} and V(U)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {V}}({\mathcal {U}})$$\end{document} have isomorphic homotopy groups in all dimensions. In particular, by choosing the cover U\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {U}}$$\end{document} appropriately, we get isomorphisms between the homotopy groups of Vietoris–Rips metric thickenings and simplicial complexes πk(VRm(X;r))≅πk(VR(X;r))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\pi _k(\textrm{VR}^\textrm{m}(X;r))\cong \pi _k(\textrm{VR}(X;r))$$\end{document} for all integers k≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\ge 0$$\end{document}, where both spaces are defined using the convention “diameter <r\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$< r$$\end{document}” (instead of ≤r\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\le r$$\end{document}). Similarly, we get isomorphisms between the homotopy groups of Čech metric thickenings and simplicial complexes πk(Cˇm(X;r))≅πk(Cˇ(X;r))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\pi _k(\check{\mathrm {{C}}}^\textrm{m}(X;r))\cong \pi _k(\check{\mathrm {{C}}}(X;r))$$\end{document} for all integers k≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\ge 0$$\end{document}, where both spaces are defined using open balls (instead of closed balls).
Journal of Applied and Computational Topology – Springer Journals
Published: Jun 1, 2023
Keywords: Vietoris–Rips complexes; Čech complexes; Metric thickenings; Optimal transport; Nerve lemmas; Homotopy groups; 55N31 (Primary); 54E35; 55P10; 55U10 (Secondary)
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.