Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Image representation is an elementary problem in any image processing application. The straightforward method is to represent an image by point-to-point. Regarding biological tasks of image processing, such as recognition, retrieval, tracking, and categorizing, such a method would be very uneconomical. The neighboring points are highly correlated with each other in natural images, so there exists a large amount of redundancies in natural images. The biological image processing should compress these redundancies as much as possible, which would significantly benefit the following classification, recognition, or retrieval tasks. To achieve this goal, pictorial information should be processed in such a way that the highest possible proportion of redundant information is filtered out. In this chapter, we first summarize the state-of-the-art processings of image representation by arranging them into basic processing and advanced processing categories, resulting in basic features and advanced features, respectively. In addition, feature learning is investigated to generate more efficient features for biological image-processing tasks. The feature selection and feature extraction techniques are used in feature learning.]
Published: May 10, 2015
Keywords: Image feature; Feature learning; Feature selection; Feature detector
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.