Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Wind and sand control by an oasis protective system: a case from the southeastern edge of the Tengger Desert, China

Wind and sand control by an oasis protective system: a case from the southeastern edge of the... Wind and sand control are important factors in combating desertification and protecting oases. An oasis protective system can provide these benefits, but quantitative research on protection effects has been lacking to date. This research describes an oasis protective system in the southeastern border of the Tengger Desert. The system consists of a sand barrier belt, a shrub and herbaceous plant belt, and a farmland shelter belt. The system was compared to a bare dunes area as the control zone. The study investigated wind proof effect, sediment transport, and erosion through field observations. Results showed that the roughness of the shrub and herbaceous plant belt, farmland shelter belt, and sand barrier belt were increased compared with bare dunes. The shrub and herbaceous plant belt provided the highest wind proof effect values for the same wind velocity measurement height, and the wind proof effect values for different protective belts were as follows: shrub and herbaceous plant belt > farmland shelter belt > sand barrier belt. The sand barrier belt provided effective wind and sand control at heights from 0 to 50 cm above the ground. The total sediment transport for each protective belt is as follows: bare dunes > sand barrier belt > shrub and herbaceous plant belt > farmland shelter belt. The sediment transport decreased exponentially as the height increased. In the bare dunes and protective systems, the sediment transport is mainly within 30 cm of the ground surface. The wind erosion intensity for this protective system was as follows: bare dunes > sand barrier belt > shrub and herbaceous plant belt > farmland shelter belt. This research offers quantitative evidence for how oasis protective systems can effectively intercept sand and prevent erosion in oases. The results of this study can be applied in similar regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mountain Science Springer Journals

Wind and sand control by an oasis protective system: a case from the southeastern edge of the Tengger Desert, China

Loading next page...
 
/lp/springer-journals/wind-and-sand-control-by-an-oasis-protective-system-a-case-from-the-BV0gEp55lO

References (76)

Publisher
Springer Journals
Copyright
Copyright © 2019 by Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Earth Sciences, general; Geography, general; Environment, general; Ecology
ISSN
1672-6316
eISSN
1993-0321
DOI
10.1007/s11629-019-5486-8
Publisher site
See Article on Publisher Site

Abstract

Wind and sand control are important factors in combating desertification and protecting oases. An oasis protective system can provide these benefits, but quantitative research on protection effects has been lacking to date. This research describes an oasis protective system in the southeastern border of the Tengger Desert. The system consists of a sand barrier belt, a shrub and herbaceous plant belt, and a farmland shelter belt. The system was compared to a bare dunes area as the control zone. The study investigated wind proof effect, sediment transport, and erosion through field observations. Results showed that the roughness of the shrub and herbaceous plant belt, farmland shelter belt, and sand barrier belt were increased compared with bare dunes. The shrub and herbaceous plant belt provided the highest wind proof effect values for the same wind velocity measurement height, and the wind proof effect values for different protective belts were as follows: shrub and herbaceous plant belt > farmland shelter belt > sand barrier belt. The sand barrier belt provided effective wind and sand control at heights from 0 to 50 cm above the ground. The total sediment transport for each protective belt is as follows: bare dunes > sand barrier belt > shrub and herbaceous plant belt > farmland shelter belt. The sediment transport decreased exponentially as the height increased. In the bare dunes and protective systems, the sediment transport is mainly within 30 cm of the ground surface. The wind erosion intensity for this protective system was as follows: bare dunes > sand barrier belt > shrub and herbaceous plant belt > farmland shelter belt. This research offers quantitative evidence for how oasis protective systems can effectively intercept sand and prevent erosion in oases. The results of this study can be applied in similar regions.

Journal

Journal of Mountain ScienceSpringer Journals

Published: Nov 9, 2019

There are no references for this article.