Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Antibacteria, Antiurease, and Antiproliferative Abruquinones from Abrus precatorius Roots

Antibacteria, Antiurease, and Antiproliferative Abruquinones from Abrus precatorius Roots Abstract Phytochemical studies of methanol soluble fractions of Abrus precatorius Linn (Fabaceae) led to the isolation of four abruquinones (abruquinones M, A, E, and B). Structures of the compounds were elucidated using spectroscopic analyses - 1D, 2D NMR, HRESI-MS. Evaluation of the therapeutic effects of A. precatorius fractions showed significant (p < 0.05) antibacterial and antiurease activities. Further therapeutic evaluation of the compounds showed that abruquinones M, A, E, and B demonstrated antibacterial activities by inhibiting significantly (p < 0.05) the growth of multidrug resistant S. aureus (MIC values ranged from 20 - 30 μg/mL) (µM) via induction of morphological damages with concomitant membrane segmentation. Abruquinones A and B showed significant (p < 0.05) urease inhibiting activity (IC50 values 35.2 and 37.7 µM, respectively), docked tightly to the side chains of urease enzyme active site via π-cation interactions, as well as showed cytotoxicity against AU565 and MDA-MB231 breast cancer cells (IC50 values 23.13 and 9.05 μM, respectively). These findings suggest abruquinones (isoflavanquinones) from A. precatorius roots as viable candidates for further mechanistic studies on possible antibacterial, antiurease, and anticancer drug development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biologically Active Products from Nature Taylor & Francis

Antibacteria, Antiurease, and Antiproliferative Abruquinones from Abrus precatorius Roots

Journal of Biologically Active Products from Nature , Volume 12 (3): 15 – May 4, 2022

Abstract

Abstract Phytochemical studies of methanol soluble fractions of Abrus precatorius Linn (Fabaceae) led to the isolation of four abruquinones (abruquinones M, A, E, and B). Structures of the compounds were elucidated using spectroscopic analyses - 1D, 2D NMR, HRESI-MS. Evaluation of the therapeutic effects of A. precatorius fractions showed significant (p < 0.05) antibacterial and antiurease activities. Further therapeutic evaluation of the compounds showed that abruquinones M, A, E, and B demonstrated antibacterial activities by inhibiting significantly (p < 0.05) the growth of multidrug resistant S. aureus (MIC values ranged from 20 - 30 μg/mL) (µM) via induction of morphological damages with concomitant membrane segmentation. Abruquinones A and B showed significant (p < 0.05) urease inhibiting activity (IC50 values 35.2 and 37.7 µM, respectively), docked tightly to the side chains of urease enzyme active site via π-cation interactions, as well as showed cytotoxicity against AU565 and MDA-MB231 breast cancer cells (IC50 values 23.13 and 9.05 μM, respectively). These findings suggest abruquinones (isoflavanquinones) from A. precatorius roots as viable candidates for further mechanistic studies on possible antibacterial, antiurease, and anticancer drug development.

Loading next page...
 
/lp/taylor-francis/antibacteria-antiurease-and-antiproliferative-abruquinones-from-abrus-gPyus0Bk7R

References (58)

Publisher
Taylor & Francis
Copyright
© 2022 Har Krishan Bhalla & Sons
ISSN
2231-1874
eISSN
2231-1866
DOI
10.1080/22311866.2022.2069154
Publisher site
See Article on Publisher Site

Abstract

Abstract Phytochemical studies of methanol soluble fractions of Abrus precatorius Linn (Fabaceae) led to the isolation of four abruquinones (abruquinones M, A, E, and B). Structures of the compounds were elucidated using spectroscopic analyses - 1D, 2D NMR, HRESI-MS. Evaluation of the therapeutic effects of A. precatorius fractions showed significant (p < 0.05) antibacterial and antiurease activities. Further therapeutic evaluation of the compounds showed that abruquinones M, A, E, and B demonstrated antibacterial activities by inhibiting significantly (p < 0.05) the growth of multidrug resistant S. aureus (MIC values ranged from 20 - 30 μg/mL) (µM) via induction of morphological damages with concomitant membrane segmentation. Abruquinones A and B showed significant (p < 0.05) urease inhibiting activity (IC50 values 35.2 and 37.7 µM, respectively), docked tightly to the side chains of urease enzyme active site via π-cation interactions, as well as showed cytotoxicity against AU565 and MDA-MB231 breast cancer cells (IC50 values 23.13 and 9.05 μM, respectively). These findings suggest abruquinones (isoflavanquinones) from A. precatorius roots as viable candidates for further mechanistic studies on possible antibacterial, antiurease, and anticancer drug development.

Journal

Journal of Biologically Active Products from NatureTaylor & Francis

Published: May 4, 2022

Keywords: Abrus precatorius; Abruquinone; Antibacterial; Antiurease; Breast cancer

There are no references for this article.