Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The incidence of harmful cyanobacterial blooms in surface waters has increased in frequency and outbreaks have become more severe. This research aimed at studying the effect of a culture of two green algal species as biological control of the growth of toxic blue-green algae. Nile tilapia of an initial mean weight of 55 g fish−1 (SE 5) were used for each of four treatments in triplicate. All algal seedings were done at 4 × 103 cells ml−1. Treatment I (untreated) served as a control, Treatment II was seeded with Microcystis aeruginosa, Treatment III was seeded with green algae Chlorella ellipsoidea and Scenedesmus bijuga, and Treatment IV was seeded with a mixture of M. aeruginosa and C. ellipsoidea and S. bijuga. After 10 days, Treatment IV showed 3.4% viable cell survival, compared to 35% and 55% in Treatments II and III, respectively. Histopathological examination revealed mild degenerative changes and focal necrosis, as well as a depletion of haematopoietic tissues in Treatment IV compared to Treatment II. These findings suggest the efficacy of C. ellipsoidea and S. bijuga in controlling the growth of M. aeruginosa and minimising its side effects on cultured Nile tilapia.
African Journal of Aquatic Science – Taylor & Francis
Published: Oct 2, 2014
Keywords: blue-green algae; fish culture; histopathology; microcystin; toxicity
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.