Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Improving the reliability of landslide susceptibility mapping through spatial uncertainty analysis: a case study of Al Hoceima, Northern Morocco

Improving the reliability of landslide susceptibility mapping through spatial uncertainty... AbstractThis paper aims at providing an answer as to whether generalization obtained with data-driven modelling can be used to gauge the plausibility of the physically based (PB) model’s prediction. Two statistical models namely; Weight of Evidence (WofE) and Logistic Regression (LR), and a PB model using the infinite slope assumptions were evaluated and compared with respect to their abilities to predict susceptible areas to shallow landslides at the 1:10.000 urban scale. Threshold-dependent performance metrics showed that the three methods produced statistically comparable results in terms of success and prediction rates. However, with the Area Under the receiver operator Curve (AUC), statistical models are more accurate (88.7 and 84.6% for LR and WofE, respectively) than the PB model (only 69.8%). Nevertheless, in such data-sparse situation, the usual approaches for validation, i.e. comparing observed with predicted data, are insufficient, formal uncertainty analysis (UA) is a means for evaluating the validity and reliability of the model. We then refitted the PB model using a stochastic modification of the infinite slope stability model input scheme using Monte Carlo (MC) method backed with sensitivity analysis (SA). For statistical models, we used an informal Student t-test for estimating the certainty of the predicted probability (PP) at each location. Both modelling outputs independently show a high validity; and whereas the level of confidence in LR and WofE models remained the same after performance re-evaluation, the accuracy of the PB model showed an improvement (AUC = 72%). This result is reasonable and provides a further validation of PB model. So, in urban slope analysis, where PB diagnostic is necessary, statistical and PB modelling may play equally supportive roles in landslide hazard assessment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geocarto International Taylor & Francis

Improving the reliability of landslide susceptibility mapping through spatial uncertainty analysis: a case study of Al Hoceima, Northern Morocco

Geocarto International , Volume 34 (1): 35 – Jan 2, 2019

Improving the reliability of landslide susceptibility mapping through spatial uncertainty analysis: a case study of Al Hoceima, Northern Morocco

Geocarto International , Volume 34 (1): 35 – Jan 2, 2019

Abstract

AbstractThis paper aims at providing an answer as to whether generalization obtained with data-driven modelling can be used to gauge the plausibility of the physically based (PB) model’s prediction. Two statistical models namely; Weight of Evidence (WofE) and Logistic Regression (LR), and a PB model using the infinite slope assumptions were evaluated and compared with respect to their abilities to predict susceptible areas to shallow landslides at the 1:10.000 urban scale. Threshold-dependent performance metrics showed that the three methods produced statistically comparable results in terms of success and prediction rates. However, with the Area Under the receiver operator Curve (AUC), statistical models are more accurate (88.7 and 84.6% for LR and WofE, respectively) than the PB model (only 69.8%). Nevertheless, in such data-sparse situation, the usual approaches for validation, i.e. comparing observed with predicted data, are insufficient, formal uncertainty analysis (UA) is a means for evaluating the validity and reliability of the model. We then refitted the PB model using a stochastic modification of the infinite slope stability model input scheme using Monte Carlo (MC) method backed with sensitivity analysis (SA). For statistical models, we used an informal Student t-test for estimating the certainty of the predicted probability (PP) at each location. Both modelling outputs independently show a high validity; and whereas the level of confidence in LR and WofE models remained the same after performance re-evaluation, the accuracy of the PB model showed an improvement (AUC = 72%). This result is reasonable and provides a further validation of PB model. So, in urban slope analysis, where PB diagnostic is necessary, statistical and PB modelling may play equally supportive roles in landslide hazard assessment.

Loading next page...
 
/lp/taylor-francis/improving-the-reliability-of-landslide-susceptibility-mapping-through-Qxr8zBMAyG

References (212)

Publisher
Taylor & Francis
Copyright
© 2017 Informa UK Limited, trading as Taylor & Francis Group
ISSN
1752-0762
eISSN
1010-6049
DOI
10.1080/10106049.2017.1357767
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper aims at providing an answer as to whether generalization obtained with data-driven modelling can be used to gauge the plausibility of the physically based (PB) model’s prediction. Two statistical models namely; Weight of Evidence (WofE) and Logistic Regression (LR), and a PB model using the infinite slope assumptions were evaluated and compared with respect to their abilities to predict susceptible areas to shallow landslides at the 1:10.000 urban scale. Threshold-dependent performance metrics showed that the three methods produced statistically comparable results in terms of success and prediction rates. However, with the Area Under the receiver operator Curve (AUC), statistical models are more accurate (88.7 and 84.6% for LR and WofE, respectively) than the PB model (only 69.8%). Nevertheless, in such data-sparse situation, the usual approaches for validation, i.e. comparing observed with predicted data, are insufficient, formal uncertainty analysis (UA) is a means for evaluating the validity and reliability of the model. We then refitted the PB model using a stochastic modification of the infinite slope stability model input scheme using Monte Carlo (MC) method backed with sensitivity analysis (SA). For statistical models, we used an informal Student t-test for estimating the certainty of the predicted probability (PP) at each location. Both modelling outputs independently show a high validity; and whereas the level of confidence in LR and WofE models remained the same after performance re-evaluation, the accuracy of the PB model showed an improvement (AUC = 72%). This result is reasonable and provides a further validation of PB model. So, in urban slope analysis, where PB diagnostic is necessary, statistical and PB modelling may play equally supportive roles in landslide hazard assessment.

Journal

Geocarto InternationalTaylor & Francis

Published: Jan 2, 2019

Keywords: Landslide; statistical; physically based; performance; uncertainty

There are no references for this article.