Access the full text.
Sign up today, get DeepDyve free for 14 days.
Antonios Tsolis, N. Papandreou, V. Iconomidou, S. Hamodrakas (2013)
A Consensus Method for the Prediction of ‘Aggregation-Prone’ Peptides in Globular ProteinsPLoS ONE, 8
Giulia Mazzini, S. Ricagno, Serena Caminito, Paola Rognoni, P. Milani, M. Nuvolone, Marco Basset, A. Foli, R. Russo, G. Merlini, G. Palladini, F. Lavatelli (2021)
Protease‐sensitive regions in amyloid light chains: what a common pattern of fragmentation across organs suggests about aggregationThe Febs Journal, 289
E. Rennella, G. Morgan, N. Yan, J. Kelly, L. Kay (2019)
The role of protein thermodynamics and primary structure in fibrillogenesis of variable domains from immunoglobulin light-chains.Journal of the American Chemical Society
M. Das, Christopher Wilson, X. Mei, T. Wales, J. Engen, O. Gursky (2016)
Structural Stability and Local Dynamics in Disease-Causing Mutants of Human Apolipoprotein A-I: What Makes the Protein Amyloidogenic?Journal of molecular biology, 428 2 Pt B
Cardine Nokwe, M. Hora, M. Zacharias, H. Yagi, C. John, B. Reif, Y. Goto, J. Buchner (2015)
The Antibody Light-Chain Linker Is Important for Domain Stability and Amyloid Formation.Journal of molecular biology, 427 22
Emily Lewkowicz, S. Jayaraman, O. Gursky (2021)
Protein Amyloid Cofactors: Charged Side-Chain Arrays Meet Their Match?Trends in biochemical sciences
D. Peterle, E. Klimtchuk, T. Wales, Florian Georgescauld, L. Connors, J. Engen, O. Gursky (2021)
A conservative point mutation in a dynamic antigen-binding loop of human immunoglobulin λ6 light chain promotes pathologic amyloid formation.Journal of molecular biology
J. Buxbaum, A. Dispenzieri, D. Eisenberg, M. Fändrich, G. Merlini, M. Saraiva, Y. Sekijima, P. Westermark (2022)
Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature CommitteeAmyloid, 29
A. Roussel, S. Spinelli, S. Deret, J. Navaza, P. Aucouturier, C. Cambillau (1999)
The structure of an entire noncovalent immunoglobulin kappa light-chain dimer (Bence-Jones protein) reveals a weak and unusual constant domains association.European journal of biochemistry, 260 1
G. Merlini, A. Dispenzieri, V. Sanchorawala, S. Schönland, G. Palladini, P. Hawkins, M. Gertz (2018)
Systemic immunoglobulin light chain amyloidosisNature Reviews Disease Primers, 4
Paolo Swuec, F. Lavatelli, M. Tasaki, Cristina Paissoni, Paola Rognoni, M. Maritan, F. Brambilla, P. Milani, P. Mauri, C. Camilloni, G. Palladini, G. Merlini, S. Ricagno, M. Bolognesi (2018)
Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patientNature Communications, 10
Yasset Pérez-Riverol, Jingwen Bai, Chakradhar Bandla, D. García-Seisdedos, S. Hewapathirana, Selvakumar Kamatchinathan, D. Kundu, Ananth Prakash, Anika Frericks-Zipper, M. Eisenacher, Mathias Walzer, Shengbo Wang, A. Brazma, J. Vizcaíno (2021)
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidencesNucleic Acids Research, 50
G. Morgan, Grace Usher, J. Kelly (2017)
Incomplete Refolding of Antibody Light Chains to Non-Native, Protease-Sensitive Conformations Leads to Aggregation: A Mechanism of Amyloidogenesis in Patients?Biochemistry, 56 50
G. Palladini, G. Merlini (2021)
How I Treat AL Amyloidosis.Blood
Stina Enqvist, K. Sletten, P. Westermark (2009)
Fibril protein fragmentation pattern in systemic AL‐amyloidosisThe Journal of Pathology, 219
Vincent Batori, A. Koide, S. Koide (2002)
Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain.Protein engineering, 15 12
(2018)
Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis, 293
L. Radamaker, Yin-Hsi Lin, K. Annamalai, S. Huhn, U. Hegenbart, S. Schönland, G. Fritz, Matthias Schmidt, M. Fändrich (2019)
Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosisNature Communications, 10
(2010)
Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils, 285
Glenn Masson, John Burke, Natalie Ahn, Ganesh Anand, C. Borchers, S. Brier, G. Bou-Assaf, J. Engen, S. Englander, J. Faber, Rachel Garlish, Patrick Griffin, Michael Gross, M. Guttman, Y. Hamuro, Albert Heck, Damian Houde, Roxana Iacob, Thomas Jørgensen, I. Kaltashov, J. Klinman, L. Konermann, P. Man, L. Mayne, B. Pascal, Dana Reichmann, M. Skehel, J. Snijder, Timothy Strutzenberg, Eric Underbakke, Cornelia Wagner, T. Wales, Benjamin Walters, David Weis, Derek Wilson, P. Wintrode, Zhongqi Zhang, Jie Zheng, D. Schriemer, K. Rand (2019)
Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experimentsNature Methods, 16
M. Hora, R. Sarkar, V. Morris, Kai Xue, Elke Prade, Emma Harding, J. Buchner, B. Reif (2017)
MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursorsPLoS ONE, 12
G. Morgan, J. Wall (2020)
The Process of Amyloid Formation due to Monoclonal Immunoglobulins.Hematology/oncology clinics of North America, 34 6
L. Connors, Yan Jiang, M. Budnik, R. Théberge, T. Prokaeva, K. Bodi, D. Seldin, C. Costello, M. Skinner (2007)
Heterogeneity in primary structure, post-translational modifications, and germline gene usage of nine full-length amyloidogenic kappa1 immunoglobulin light chains.Biochemistry, 46 49
L. Oberti, Paola Rognoni, A. Barbiroli, F. Lavatelli, R. Russo, M. Maritan, G. Palladini, M. Bolognesi, G. Merlini, S. Ricagno (2017)
Concurrent structural and biophysical traits link with immunoglobulin light chains amyloid propensityScientific Reports, 7
Marta Marin-Argany, Jofre Güell‐Bosch, L. Blancas-Mejía, S. Villegas, M. Ramirez-Alvarado (2015)
Mutations can cause light chains to be too stable or too unstable to form amyloid fibrilsProtein Science, 24
L. Radamaker, Julian Baur, S. Huhn, Christian Haupt, U. Hegenbart, S. Schönland, A. Bansal, Matthias Schmidt, M. Fändrich (2020)
Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosisNature Communications, 12
L. Radamaker, Sara Karimi-Farsijani, Giada Andreotti, Julian Baur, M. Neumann, S. Schreiner, Natalie Berghaus, Raoul Motika, Christian Haupt, P. Walther, Volker Schmidt, S. Huhn, U. Hegenbart, S. Schönland, S. Wiese, C. Read, Matthias Schmidt, M. Fändrich (2021)
Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EMNature Communications, 12
M. Maritan, Margherita Romeo, L. Oberti, Pietro Sormanni, M. Tasaki, R. Russo, A. Ambrosetti, P. Motta, Paola Rognoni, G. Mazzini, A. Barbiroli, G. Palladini, M. Vendruscolo, L. Diomede, M. Bolognesi, G. Merlini, F. Lavatelli, S. Ricagno (2019)
Inherent biophysical properties modulate the toxicity of soluble amyloidogenic light chains.Journal of molecular biology
(2007)
Diversity and diversification of light chains in myeloma: the specter of amyloidogenesis by proxy, 153
G. Faravelli, Valentina Mondani, P. Mangione, S. Raimondi, L. Marchese, F. Lavatelli, M. Stoppini, A. Corazza, D. Canetti, G. Verona, L. Obici, Graham Taylor, J. Gillmore, S. Giorgetti, V. Bellotti (2022)
Amyloid Formation by Globular Proteins: The Need to Narrow the Gap Between in Vitro and in Vivo MechanismsFrontiers in Molecular Biosciences, 9
Sergio Sánchez, Francisco Álvarez, Guadalupe Zavala-Padilla, Luz Mejia-Cristobal, A. Cruz-Rangel, M. Costas, Alejandro Velasco, J. Meléndez-Zajgla, L. Pozo-Yauner (2017)
Stability and aggregation propensity do not fully account for the association of various germline variable domain gene segments with light chain amyloidosisBiological Chemistry, 398
B. Kaplan, A. Livneh, B. Sela (2011)
Immunoglobulin Free Light Chain Dimers in Human DiseasesThe Scientific World Journal, 11
B. Weber, M. Hora, P. Kazman, C. Göbl, C. Camilloni, B. Reif, J. Buchner (2018)
The Antibody Light-Chain Linker Regulates Domain Orientation and Amyloidogenicity.Journal of molecular biology, 430 24
S. Burley, G. Petsko (1985)
Aromatic-aromatic interaction: a mechanism of protein structure stabilization.Science, 229 4708
T. Kourelis, S. Dasari, J. Theis, M. Ramirez-Alvarado, Paul Kurtin, M. Gertz, S. Zeldenrust, Roman Ženka, A. Dogan, A. Dispenzieri (2017)
Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry.Blood, 129 3
E. Rennella, G. Morgan, J. Kelly, L. Kay (2018)
Role of domain interactions in the aggregation of full-length immunoglobulin light chainsProceedings of the National Academy of Sciences, 116
P. Kazman, Ramona Absmeier, H. Engelhardt, J. Buchner (2021)
Dissection of the amyloid formation pathway in AL amyloidosisNature Communications, 12
Georg Rottenaicher, B. Weber, Florian Rührnößl, P. Kazman, Ramona Absmeier, Manuel Hitzenberger, M. Zacharias, J. Buchner (2021)
Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chainsThe Journal of Biological Chemistry, 296
E. Klimtchuk, O. Gursky, Rupesh Patel, Kate Laporte, L. Connors, M. Skinner, D. Seldin (2010)
The critical role of the constant region in thermal stability and aggregation of amyloidogenic immunoglobulin light chain.Biochemistry, 49 45
M. Lefranc, G. Lefranc (2020)
Immunoglobulins or Antibodies: IMGT® Bridging Genes, Structures and FunctionsBiomedicines, 8
(2008)
Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue, 7
Abstract Background Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease complicated by vast numbers of patient-specific mutations. We explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. Methods Hydrogen-deuterium exchange mass spectrometry analysis of conformational dynamics in recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation and amyloidogenic sequence propensity. The results were mapped on the structures of native and fibrillary proteins. Results Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower, suggesting different major factors influencing amyloidogenesis. In 33*01-related amyloid LC, these factors involved destabilization of the native structure and probable stabilization of amyloid. The atypical behavior of 39*01-related amyloid LC stemmed from increased dynamics/exposure of amyloidogenic segments in βC′V and βEV that could initiate aggregation and decreased dynamics/exposure near the Cys23–Cys88 disulfide. Conclusions The results suggest distinct amyloidogenic pathways for closely related LCs and point to the complementarity-defining regions CDR1 and CDR3, linked via the conserved internal disulfide, as key factors in amyloid formation.
Amyloid – Taylor & Francis
Published: Oct 2, 2023
Keywords: Hydrogen-deuterium exchange mass spectrometry; light chain amyloidosis; mutational effects on native and misfolded states; protein stability and dynamics; Protein aggregation, proteolysis and misfolding
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.