Access the full text.
Sign up today, get DeepDyve free for 14 days.
Sukin Sim, Peter Johnson, Alán Aspuru-Guzik (2019)
Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical AlgorithmsAdvanced Quantum Technologies, 2
M. Ostaszewski, L. M. Trenkwalder, W. Masarczyk, E. Scerri, V. Dunjko (2021)
Advances in Neural Information Processing Systems, 34
Ze-Tong Li, Fan-Xu Meng, Xutao Yu, Zaichen Zhang (2021)
Quantum algorithm for Laplacian eigenmap via Rayleigh quotient iterationQuantum Information Processing, 21
Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, T. Osborne, Robert Salzmann, D. Scheiermann, Ramona Wolf (2019)
Training deep quantum neural networksNature Communications, 11
J. Biamonte, P. Wittek, Nicola Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd (2016)
Quantum machine learningNature, 549
Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, M. Nakadai, Jiabao Chen, Ken Nakanishi, K. Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin Yan, T. Kawakubo, Yuya Nakagawa, Yohei Ibe, Youyuan Zhang, Hirotsugu Yamashita, Hikaru Yoshimura, Akihiro Hayashi, K. Fujii (2020)
Qulacs: a fast and versatile quantum circuit simulator for research purposeQuantum, 5
J. Preskill (2018)
Quantum Computing in the NISQ era and beyondQuantum
Daniel França, R. García-Patrón (2020)
Limitations of optimization algorithms on noisy quantum devicesNature Physics, 17
Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, S. Benjamin (2018)
Theory of variational quantum simulationQuantum
Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao (2020)
Quantum circuit architecture search for variational quantum algorithmsnpj Quantum Information, 8
P. W. Shor (1999)
SIAM Review, 41
Zi-Jian Zhang, T. Kyaw, Jakob Kottmann, M. Degroote, A. Aspuru‐Guzik (2020)
Mutual information-assisted adaptive variational quantum eigensolverQuantum Science & Technology, 6
M. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, Alán Aspuru-Guzik, E. Solano (2013)
From transistor to trapped-ion computers for quantum chemistryScientific Reports, 4
Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, A. Sone, L. Cincio, Patrick Coles (2020)
Noise-induced barren plateaus in variational quantum algorithmsNature Communications, 12
Xin Wang, Zhixin Song, Youle Wang (2020)
Variational Quantum Singular Value DecompositionQuantum, 5
Kouhei Nakaji, N. Yamamoto (2020)
Expressibility of the alternating layered ansatz for quantum computationQuantum, 5
Percentages in order in brackets, henceforth, are improvements in terms of error, quantum cost, and stability, respectively
T. Volkoff, Patrick Coles (2020)
Large gradients via correlation in random parameterized quantum circuitsQuantum Science & Technology, 6
Harper Grimsley, S. Economou, Edwin Barnes, N. Mayhall (2018)
An adaptive variational algorithm for exact molecular simulations on a quantum computerNature Communications, 10
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. Chow, J. Gambetta (2017)
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnetsNature, 549
Edward Grant, Leonard Wossnig, M. Ostaszewski, Marcello Benedetti (2019)
An initialization strategy for addressing barren plateaus in parametrized quantum circuitsQuantum
G. Low, I. Chuang (2016)
Hamiltonian Simulation by QubitizationQuantum
P. Wolfe (1969)
Convergence Conditions for Ascent Methods. IISiam Review, 11
Vojtěch Havlíček, A. Córcoles, K. Temme, A. Harrow, A. Kandala, J. Chow, J. Gambetta (2018)
Supervised learning with quantum-enhanced feature spacesNature, 567
J. McClean, S. Boixo, V. Smelyanskiy, R. Babbush, H. Neven (2018)
Barren plateaus in quantum neural network training landscapesNature Communications, 9
A. Peruzzo, J. McClean, P. Shadbolt, M. Yung, Xiaoqi Zhou, P. Love, Alán Aspuru-Guzik, J. O'Brien (2013)
A variational eigenvalue solver on a photonic quantum processorNature Communications, 5
A. Arrasmith, M. Cerezo, Piotr Czarnik, L. Cincio, Patrick Coles (2020)
Effect of barren plateaus on gradient-free optimizationQuantum, 5
Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, A. Figalli, Stefan Woerner (2020)
The power of quantum neural networksNature Computational Science, 1
M. Cerezo, A. Sone, T. Volkoff, L. Cincio, Patrick Coles (2021)
Cost function dependent barren plateaus in shallow parametrized quantum circuitsNature Communications, 12
M. Cerezo, Patrick Coles (2020)
Higher order derivatives of quantum neural networks with barren plateausQuantum Science & Technology, 6
Andrea Skolik, J. McClean, M. Mohseni, Patrick Smagt, M. Leib (2020)
Layerwise learning for quantum neural networksQuantum Machine Intelligence, 3
Fan-Xu Meng, Ze-Tong Li, Yuan Xu-tao, Zaichen Zhang (2022)
Quantum algorithm for MUSIC-based DOA estimation in hybrid MIMO systemsQuantum Science & Technology, 7
Variational quantum eigensolver (VQE), aiming at determining the ground state energy of a quantum system described by a Hamiltonian on noisy intermediate scale quantum (NISQ) devices. However, the accuracy and trainability of the current VQE algorithm are significantly influenced due to the barren plateau (BP), the non‐negligible gate error and limited coherence time in NISQ devices. To tackle these issues, a gradient‐cost multiobjective alternate framework with variable ansatz is proposed. A theoretical framework is first proposed for VQE with variable ansatz (VA‐VQE) via alternately solving a multiobjective optimization problem defined by cost function values and gradient magnitudes and the original VQE problem. Then, a novel implementation method based on the double ε‐greedy strategy with the candidate tree and modified multiobjective genetic algorithm is proposed. As a result, the local optima are avoided both in ansatz and parameter perspectives, the BP phenomenon is alleviated, and the stability of output ansatz is enhanced. The experimental results indicate that this framework shows considerably average improvement of the error and stability by 59.6% and 78.8% compared with the state‐of‐the‐art cost‐criterion‐based VA‐VQE implementation, and 54.1% and 73.5% compared with the gradient‐criterion‐based counterpart, respectively, with lower quantum costs.
Advanced Quantum Technologies – Wiley
Published: May 1, 2023
Keywords: alternate optimization; quantum architecture search; variable ansatz; variational quantum eigensolver
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.