Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yehuda Cohen, Bo Jørgensen, Bo Jørgensen, E. Padan, Moshe Shilo (1975)
Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limneticaNature, 257
R. Riding, S. Awramik, B. Winsborough, K. Griffin, R. Dill (1991)
Bahamian giant stromatolites: microbial composition of surface matsGeological Magazine, 128
J. Grotzinger, Andrew Knoll (1999)
Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?Annual review of earth and planetary sciences, 27
P. Gautret, R. Wit, G. Camoin, S. Golubić (2006)
Are environmental conditions recorded by the organic matrices associated with precipitated calcium carbonate in cyanobacterial microbialites?Geobiology, 4
O. Braissant, G. Cailleau, C. Dupraz, É. Verrecchia (2003)
Bacterially Induced Mineralization of Calcium Carbonate in Terrestrial Environments: The Role of Exopolysaccharides and Amino AcidsJournal of Sedimentary Research, 73
C. Dupraz, P. Visscher (2005)
Microbial lithification in marine stromatolites and hypersaline mats.Trends in microbiology, 13 9
S. Awramik, M. Semikhatov (1979)
The relationship between morphology, microstructure, and microbiota in three vertically intergrading stromatolites from the Gunflint Iron FormationCanadian Journal of Earth Sciences, 16
S. Serebryakov, M. Semikhatov (1974)
Riphean and Recent stromatolites: a comparisonAmerican Journal of Science, 274
C. Harwood, Jane Gibson (1988)
Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustrisApplied and Environmental Microbiology, 54
W. Altermann, J. Kazmierczak, A. Oren, D. Wright (2006)
Cyanobacterial calcification and its rock‐building potential during 3.5 billion years of Earth historyGeobiology, 4
R. Bagley, J. Farmer, W. Fontana (1992)
Evolution of a metabolism
J. Kazmierczak, S. Kempe (2006)
Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafoʻou Island, TongaNaturwissenschaften, 93
(1990)
Geochemical model for Proterozoic stromatolite decline
Buick Buick, Groves Groves, Dunlop Dunlop (1995)
Abiological origin of described stromatolites older than 3.2 Ga ? commentGeology, 23
S. Awramik, R. Riding (1988)
Role of algal eukaryotes in subtidal columnar stromatolite formation.Proceedings of the National Academy of Sciences of the United States of America, 85 5
J. Wierzchos, C. Ascaso (1994)
Application of back‐scattered electron imaging to the study of the lichen‐rock interfaceJournal of Microscopy, 175
C. Dupraz, P. Visscher, L. Baumgartner, R. Reid (2004)
Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)Sedimentology, 51
J. Kazmierczak, W. Altermann (2002)
Neoarchean Biomineralization by Benthic CyanobacteriaScience, 298
G. Arp, A. Reimer, J. Reitner (2001)
Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic OceansScience, 292
J. Grotzinger, J. Kasting (1993)
New Constraints on Precambrian Ocean CompositionThe Journal of Geology, 101
J. Olson, Robert Blankenship (2004)
Thinking About the Evolution of PhotosynthesisPhotosynthesis Research, 80
T. Bosak, D. Newman (2003)
Microbial nucleation of calcium carbonate in the PrecambrianGeology, 31
J. Brocks, G. Logan, R. Buick, R. Summons (1999)
Archean molecular fossils and the early rise of eukaryotes.Science, 285 5430
H. Hofmann, K. Grey, A. Hickman, R. Thorpe (1999)
Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western AustraliaGeological Society of America Bulletin, 111
M. Walter, R. Buick, J. Dunlop (1980)
Stromatolites 3,400–3,500 Myr old from the North Pole area, Western AustraliaNature, 284
D. Papineau, Jeffrey Walker, S. Mojzsis, N. Pace (2005)
Composition and Structure of Microbial Communities from Stromatolites of Hamelin Pool in Shark Bay, Western AustraliaApplied and Environmental Microbiology, 71
R. Reid, P. Visscher, A. Decho, John Stolz, B. Bebout, C. Dupraz, Ian Macintyre, H. Paerl, J. Pinckney, L. Prufert-Bebout, T. Steppe, D. desmarais (2000)
The role of microbes in accretion, lamination and early lithification of modern marine stromatolitesNature, 406
T. Bosak, D. Newman (2005)
Microbial Kinetic Controls on Calcite Morphology in Supersaturated SolutionsJournal of Sedimentary Research, 75
William Schopf (1993)
Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of LifeScience, 260
L. Dietrich, M. Tice, D. Newman (2006)
The co-evolution of life and EarthCurrent Biology, 16
I. Fairchild (1991)
Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analoguesPrecambrian Research, 53
T. Bosak, V. Souza-Egipsy, D. Newman (2004)
A laboratory model of abiotic peloid formationGeobiology, 2
D. Sumner, J. Grotzinger (1996)
Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?Geology, 24 2
Awramik Awramik, Riding Riding (1988)
Role of algal eukaryotes in subtidal columnar stromatolite formationProceedings of the National Academy of Sciences of the USA, 85
A. Allwood, M. Walter, B. Kamber, C. Marshall, I. Burch (2006)
Stromatolite reef from the Early Archaean era of AustraliaNature, 441
R. Buick, D. Groves, J. Dunlop, D. Lowe (1995)
Abiological origin of described stromatolites older than 3.2 Ga: Comment and ReplyGeology, 23
B. Simonson, K. Schubel, S. Hassler (1993)
Carbonate sedimentology of the early Precambrian Hamersley Group of Western AustraliaPrecambrian Research, 60
J. Farquhar, Huiming Bao, M. Thiemens (2000)
Atmospheric influence of Earth's earliest sulfur cycleScience, 289 5480
Martina Merz-Preiß, R. Riding (1999)
Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processesSedimentary Geology, 126
S. Kempe, E. Degens (1985)
An early soda oceanChemical Geology, 53
K. Habicht, M. Gade, B. Thamdrup, P. Berg, D. Canfield (2002)
Calibration of Sulfate Levels in the Archean OceanScience, 298
A. Kaufman, S. Xiao (2003)
High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossilsNature, 425
R. Buick, J. Dunlop, D. Groves (1981)
Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western AustraliaAlcheringa, 5
E. Padan (1979)
Facultative Anoxygenic Photosynthesis in CyanobacteriaAnnual Review of Plant Biology, 30
M. Semikhatov, C. Gebelein, P. Cloud, S. Awramik, W. Benmore (1979)
Stromatolite morphogenesis—progress and problemsCanadian Journal of Earth Sciences, 16
D. Sumner (1997)
Late Archean calcite-microbe interactions; two morphologically distinct microbial communities that affected calcite nucleation differentlyPALAIOS, 12
(1975)
Fixation, dehydration and embedding of biological samples
(1983)
Archean stromatolites: evidence of the Earth’s earliest benthos
D. Lowe (1994)
Abiological origin of described stromatolites older than 3.2 Ga.Geology, 22
D. Sumner (1997)
Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South AfricaAmerican Journal of Science, 297
J. Grotzinger, D. Rothman (1996)
An abiotic model for stromatolite morphogenesisNature, 383
ABSTRACT Although cyanobacteria are the dominant primary producers in modern stromatolites and other microbialites, the oldest stromatolites pre‐date geochemical evidence for oxygenic photosynthesis and cyanobacteria in the rock record. As a step towards the development of laboratory models of stromatolite growth, we tested the potential of a metabolically ancient anoxygenic photosynthetic bacterium to build stromatolites. This organism, Rhodopseudomonas palustris, stimulates the precipitation of calcite in solutions already highly saturated with respect to calcium carbonate, and greatly facilitates the incorporation of carbonate grains into proto‐lamina (i.e. crusts). The appreciable stimulation of the growth of proto‐lamina by a nonfilamentous anoxygenic microbe suggests that similar microbes may have played a greater role in the formation of Archean stromatolites than previously assumed.
Geobiology – Wiley
Published: Jun 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.