Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Lasaga, H. Ohmoto (2002)
The oxygen geochemical cycle: dynamics and stabilityGeochimica et Cosmochimica Acta, 66
R. Keir (2010)
A note on the fluxes of abiogenic methane and hydrogen from mid‐ocean ridgesGeophysical Research Letters, 37
P. Meister, J. Mckenzie, C. Vasconcelos, S. Bernasconi, M. Frank, M. Gutjahr, D. Schrag (2007)
Dolomite formation in the dynamic deep biosphere: results from the Peru MarginSedimentology, 54
(1984)
Archean plate tectonics revisited
J. Milliman (1993)
Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady stateGlobal Biogeochemical Cycles, 7
P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. Fahey, J. Haywood, J. Lean, D. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland (2007)
Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change
A. Isley, D. Abbott (1999)
Plume‐related mafic volcanism and the deposition of banded iron formationJournal of Geophysical Research, 104
J. Westrich, R. Berner (1984)
The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested1Limnology and Oceanography, 29
A. Anbar, A. Knoll (2002)
Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?Science, 297
R. Berner, D. Canfield (1989)
A new model for atmospheric oxygen over Phanerozoic time.American journal of science, 289 4
Robert Johnson, A. Volkov, J. Erwin (2013)
MOLECULAR-KINETIC SIMULATIONS OF ESCAPE FROM THE EX-PLANET AND EXOPLANETS: CRITERION FOR TRANSONIC FLOWThe Astrophysical Journal Letters, 768
C. Bjerrum, D. Canfield (2002)
Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxidesNature, 417
D. Walling, P. Moorehead (1989)
The particle size characteristics of fluvial suspended sediment: an overviewHydrobiologia, 176-177
E. Pope, D. Bird, M. Rosing (2012)
Isotope composition and volume of Earth’s early oceansProceedings of the National Academy of Sciences, 109
S. Polat, S. Tugrul (1995)
Nutrient and organic carbon exchanges between the Black and Marmara Seas through the Bosphorus Strait, 15
R. Berner, J. Rao (1994)
Phosphorus in sediments of the Amazon River and estuary: Implications for the global flux of phosphorus to the seaGeochimica et Cosmochimica Acta, 58
(1998)
Lean (1998) A new reference spectrum for the EUV irradiance
J. Torrent, U. Schwertmann, V. Barrón (1992)
Fast and Slow Phosphate Sorption by Goethite-Rich Natural MaterialsClays and Clay Minerals, 40
James Walker, P. Hays, J. Kasting (1981)
A negative feedback mechanism for the long‐term stabilization of Earth's surface temperatureJournal of Geophysical Research, 86
D. Schrag, J. Higgins, F. Macdonald, D. Johnston (2013)
Authigenic Carbonate and the History of the Global Carbon CycleScience, 339
P. Cappellen, E. Ingall (1994)
Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorusPaleoceanography, 9
M. Claire, D. Catling, K. Zahnle (2006)
Biogeochemical modelling of the rise in atmospheric oxygenGeobiology, 4
Yanan Shen, D. Canfield, A. Knoll (2002)
Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern AustraliaAmerican Journal of Science, 302
J. Grotzinger, J. Kasting (1993)
New Constraints on Precambrian Ocean CompositionThe Journal of Geology, 101
D. Canfield (2004)
The evolution of the Earth surface sulfur reservoirAmerican Journal of Science, 304
D. Hunten, D. Strobel (1974)
Production and Escape of Terrestrial HydrogenJournal of the Atmospheric Sciences, 31
L. Derry (2015)
Causes and consequences of mid‐Proterozoic anoxiaGeophysical Research Letters, 42
P. Hoffman (2013)
The Great Oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochsChemical Geology, 362
D. Catling, K. Zahnle, C. Mckay (2001)
Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early EarthScience, 293
Uta Dresdner (2016)
Co2 In Seawater Equilibrium Kinetics Isotopes
S. Poulton, D. Canfield (2011)
Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's HistoryElements, 7
L. Kuntz, T. Laakso, D. Schrag, S. Crowe (2015)
Modeling the carbon cycle in Lake MatanoGeobiology, 13
(2009)
The Earth System, 3rd ed
J. Buffle, R. Vitre, D. Perret, G. Leppard (1989)
Physico-chemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lakeGeochimica et Cosmochimica Acta, 53
B. Rasmussen, I. Fletcher, J. Brocks, M. Kilburn (2008)
Reassessing the first appearance of eukaryotes and cyanobacteriaNature, 455
T. Lenton, T. Dahl, S. Daines, Benjamin Mills, K. Ozaki, M. Saltzman, P. Porada (2016)
Earliest land plants created modern levels of atmospheric oxygenProceedings of the National Academy of Sciences, 113
T. Bosak, A. Knoll, A. Petroff (2013)
The Meaning of StromatolitesAnnual Review of Earth and Planetary Sciences, 41
M. Kowalewski, J. Rimstidt (2003)
Average Lifetime and Age Spectra of Detrital Grains: Toward a Unifying Theory of Sedimentary ParticlesThe Journal of Geology, 111
D. Gough (1981)
Solar interior structure and luminosity variationsSolar Physics, 74
T. Lenton, A. Watson (2003)
Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the NeoproterozoicGeophysical Research Letters, 31
(2011)
The methane cycle in ferruginous
J. Hedges, R. Keil (1995)
Sedimentary organic matter preservation: an assessment and speculative synthesisMarine Chemistry, 49
C. Klein, N. Beukes (1993)
Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in CanadaEconomic Geology, 88
Noam Bergman, T. Lenton, A. Watson (2004)
COPSE: a new model of biogeochemical cycling over Phanerozoic timeAmerican Journal of Science, 304
D. Canfield, A. Teske (1996)
Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studiesNature, 382
A. Anbar, Y. Duan, T. Lyons, G. Arnold, B. Kendall, R. Creaser, A. Kaufman, G. Gordon, C. Scott, J. Garvin, R. Buick (2007)
A Whiff of Oxygen Before the Great Oxidation Event?Science, 317
H. Holland (1984)
The chemical evolution of the atmosphere and oceans
T. Lyons, C. Reinhard, N. Planavsky (2014)
The rise of oxygen in Earth’s early ocean and atmosphereNature, 506
H. Holland (2002)
Volcanic gases, black smokers, and the great oxidation eventGeochimica et Cosmochimica Acta, 66
P. Hoffman, A. Kaufman, G. Halverson, D. Schrag (1998)
A neoproterozoic snowball earthScience, 281 5381
S. Poulton, P. Fralick, D. Canfield (2010)
Spatial variability in oceanic redox structure 1.8 billion years agoNature Geoscience, 3
P. Hoffman, D. Schrag (2002)
The snowball Earth hypothesis: testing the limits of global changeTerra Nova, 14
N. Butterfield (2009)
Oxygen, animals and oceanic ventilation: an alternative viewGeobiology, 7
R. Rye, H. Holland (1998)
Paleosols and the evolution of atmospheric oxygen: a critical review.American journal of science, 298 8
J. Hedges, F. Hu, A. Devol, H. Hartnett, Elizabeth Tsamakis, R. Keil (1999)
Sedimentary organic matter preservation : A test for selective degradation under oxic conditionsAmerican Journal of Science, 299
S. Lalonde, K. Konhauser (2015)
Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesisProceedings of the National Academy of Sciences, 112
D. Rickard, G. Luther (2007)
Chemistry of iron sulfides.Chemical reviews, 107 2
A. White, S. Dyhrman (2013)
The marine phosphorus cycleFrontiers in Microbiology, 4
L. Fox (1990)
Geochemistry of dissolved phosphate in the Sepik River and Estuary, Papua, New GuineaGeochimica et Cosmochimica Acta, 54
J. Čalogović, Carlo Albert, Frank Arnold, J. Beer, Laurent Desorgher, E. Flueckiger (2010)
Sudden cosmic ray decreases: No change of global cloud coverGeophysical Research Letters, 37
L. Kump, R. Garrels (1986)
Modeling atmospheric O 2 in the global sedimentary redox cycleAmerican Journal of Science, 286
M. Cannat (1993)
Emplacement of mantle rocks in the seafloor at mid‐ocean ridgesJournal of Geophysical Research, 98
C. Benitez‐Nelson (2000)
The biogeochemical cycling of phosphorus in marine systemsEarth-Science Reviews, 51
A. Pavlov, L. Brown, J. Kasting (2001)
UV shielding of NH3 and O2 by organic hazes in the Archean atmosphereJournal of Geophysical Research, 106
D. Catling, M. Claire (2005)
How Earth's atmosphere evolved to an oxic state: A status reportEarth and Planetary Science Letters, 237
F. Millero, S. Hubinger, M. Fernandez, S. Garnett (1987)
Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength.Environmental science & technology, 21 5
C. Reinhard, N. Planavsky, L. Robbins, C. Partin, Benjamin Gill, S. Lalonde, A. Bekker, K. Konhauser, T. Lyons (2013)
Proterozoic ocean redox and biogeochemical stasisProceedings of the National Academy of Sciences, 110
M. Kennedy, M. Droser, L. Mayer, D. Pevear, D. Mrofka (2006)
Late Precambrian Oxygenation; Inception of the Clay Mineral FactoryScience, 311
R. Kopp, J. Kirschvink, I. Hilburn, C. Nash (2005)
The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis.Proceedings of the National Academy of Sciences of the United States of America, 102 32
J. Hayes, J. Waldbauer (2006)
The carbon cycle and associated redox processes through timePhilosophical Transactions of the Royal Society B: Biological Sciences, 361
T. Mayer, W. Jarrell (2000)
Phosphorus sorption during iron(II) oxidation in the presence of dissolved silicaWater Research, 34
J. Johnson, Aya Gerpheide, M. Lamb, W. Fischer (2014)
O2 constraints from Paleoproterozoic detrital pyrite and uraniniteGeological Society of America Bulletin, 126
Z. Li, C. Lee (2004)
The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts, 228
G. Shields, J. Veizer (2002)
Precambrian marine carbonate isotope database: Version 1.1Geochemistry, 3
A. Pavlov, J. Kasting, L. Brown, K. Rages, R. Freedman (2000)
Greenhouse warming by CH4 in the atmosphere of early Earth.Journal of geophysical research, 105 E5
S. Rasool (1968)
Loss of Water from VenusJournal of the Atmospheric Sciences, 25
G. Filippelli (2002)
The Global Phosphorus CycleReviews in Mineralogy & Geochemistry, 48
A. Colman, H. Holland (2000)
Marine authigenesis: from global to microbial
Soobum Chang, R. Berner (1999)
Coal weathering and the geochemical carbon cycleGeochimica et Cosmochimica Acta, 63
R. Roble, E. Ridley, R. Dickinson (1987)
On the global mean structure of the thermosphereJournal of Geophysical Research, 92
S. Katsev, S. Crowe (2015)
Organic carbon burial efficiencies in sediments: The power law of mineralization revisitedGeology, 43
S. Avakyan, R. Il’in, V. Lavrov, G. Ogurtsov (1999)
Collision Processes and Excitation of UV Emission from Planetary Atmospheric Gases
J. Veizer (1978)
Secular variations in the composition of sedimentary carbonate rocks, II. Fe, Mn, Ca, Mg, Si and minor constituentsPrecambrian Research, 6
F. Tian, J. Kasting, Han Liu, R. Roble (2008)
Hydrodynamic planetary thermosphere model: 1. Response of the Earth's thermosphere to extreme solar EUV conditions and the significance of adiabatic coolingJournal of Geophysical Research, 113
(2010)
Explaining the Structure of the Archean MassIndependent
N. Planavsky, C. Reinhard, Xiangli Wang, Danielle Thomson, P. McGoldrick, R. Rainbird, T. Johnson, W. Fischer, T. Lyons (2014)
Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animalsScience, 346
N. Planavsky, O. Rouxel, A. Bekker, S. Lalonde, K. Konhauser, C. Reinhard, T. Lyons (2010)
The evolution of the marine phosphate reservoirNature, 467
W. Reeburgh (2007)
Oceanic methane biogeochemistry.Chemical reviews, 107 2
C. Partin, A. Bekker, N. Planavsky, C. Scott, Benjamin Gill, Chao Li, V. Podkovyrov, A. Maslov, K. Konhauser, S. Lalonde, G. Love, S. Poulton, T. Lyons (2013)
Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shalesEarth and Planetary Science Letters, 369
G. Shaffer (1986)
Phosphate pumps and shuttles in the Black SeaNature, 321
A. Attar (2013)
Global environment: water, air and geochemical cyclesInternational Journal of Environmental Studies, 70
A. Scott, I. Glasspool (2006)
The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.Proceedings of the National Academy of Sciences of the United States of America, 103 29
B. Kendall, C. Reinhard, T. Lyons, A. Kaufman, S. Poulton, A. Anbar (2010)
Pervasive oxygenation along late Archaean ocean marginsNature Geoscience, 3
S. Sahoo, N. Planavsky, B. Kendall, Xinqiang Wang, Xiaoying Shi, C. Scott, A. Anbar, T. Lyons, G. Jiang (2012)
Ocean oxygenation in the wake of the Marinoan glaciationNature, 489
(2005)
EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES . I . HIGH-ENERGY IRRADIANCES ( 1 – 1700 8 )
J. Galloway, F. Dentener, D. Capone, E. Boyer, R. Howarth, S. Seitzinger, G. Asner, C. Cleveland, P. Green, E. Holland, D. Karl, Anthony Michaels, J. Porter, A. Townsend, C. Vörösmarty (2004)
Nitrogen Cycles: Past, Present, and FutureBiogeochemistry, 70
C. Goldblatt, T. Lenton, A. Watson (2006)
Bistability of atmospheric oxygen and the Great OxidationNature, 443
J. Gaillardet, B. Dupré, P. Louvat, C. Allègre (1999)
Global silicate weathering and CO2 consumption rates deduced from the chemistry of large riversChemical Geology, 159
F. Millero, S. Sotolongo, Miguel Izaguirre (1987)
The oxidation kinetics of Fe(II) in seawaterGeochimica et Cosmochimica Acta, 51
L. Kump (2008)
The rise of atmospheric oxygenNature, 451
D. Canfield, M. Rosing, C. Bjerrum (2006)
Early anaerobic metabolismsPhilosophical Transactions of the Royal Society B: Biological Sciences, 361
J. Strickland, T. Parsons (1968)
A practical handbook of seawater analysis
(1968)
Atmospheric and Hydrospheric Evolution of the Primitive Earth
N. Planavsky, P. McGoldrick, C. Scott, Chao Li, C. Reinhard, A. Kelly, X. Chu, A. Bekker, G. Love, T. Lyons (2011)
Widespread iron-rich conditions in the mid-Proterozoic oceanNature, 477
Anneli Gunnars, S. Blomqvist, P. Johansson, C. Andersson (2002)
Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calciumGeochimica et Cosmochimica Acta, 66
A. Dalgarno, F. Smith (1962)
The thermal conductivity and viscosity of atomic oxygenPlanetary and Space Science, 9
R. Wordsworth, R. Pierrehumbert (2014)
ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETSThe Astrophysical Journal Letters, 785
(1992)
Development of a Sequential Extraction Method for Di↵erent Forms
Z. Li, D. Rubie, C. Gessmann (2004)
The Constancy of Upper Mantle fO2 Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric O2
T. Laakso, D. Schrag (2012)
Regulation of atmospheric oxygen during the ProterozoicEarth and Planetary Science Letters, 388
C. Klein (2005)
Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and originsAmerican Mineralogist, 90
B. Shizgal, G. Arkos (1996)
Nonthermal escape of the atmospheres of Venus, Earth, and MarsReviews of Geophysics, 34
R. Parfitt (1979)
Anion Adsorption by Soils and Soil MaterialsAdvances in Agronomy, 30
(2007)
A Comparative Study of the Influences of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars
A. Pavlov, J. Kasting (2002)
Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.Astrobiology, 2 1
D. Abbot, A. Voigt, M. Branson, R. Pierrehumbert, D. Pollard, Guillaume Hir, D. Koll (2012)
Clouds and Snowball Earth deglaciationGeophysical Research Letters, 39
G. B.
The Dynamical Theory of GasesNature, 98
D. Turcotte (1980)
On the thermal evolution of the earthEarth and Planetary Science Letters, 48
L. Kump, M. Barley (2007)
Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years agoNature, 448
K. Habicht, M. Gade, B. Thamdrup, P. Berg, D. Canfield (2002)
Calibration of Sulfate Levels in the Archean OceanScience, 298
JF Kasting (1987)
Earth's early atmosphereScience, 259
(2007)
Deep-Sea Res
T. DeVries, C. Deutsch, F. Primeau, B. Chang, A. Devol (2012)
Global rates of water-column denitrification derived from nitrogen gas measurementsNature Geoscience, 5
J. Farquhar, A. Zerkle, A. Bekker (2010)
Geological constraints on the origin of oxygenic photosynthesisPhotosynthesis Research, 107
E. Sperling, Charles Wolock, Alex Morgan, Benjamin Gill, M. Kunzmann, G. Halverson, F. Macdonald, A. Knoll, D. Johnston (2015)
Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenationNature, 523
D. Abbott, S. Hoffman (1984)
Archaean plate tectonics revisited 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continentsTectonics, 3
D. Hunten (1973)
The Escape of Light Gases from Planetary AtmospheresJournal of the Atmospheric Sciences, 30
G. Logan, J. Hayes, G. Hieshima, R. Summons (1995)
Terminal Proterozoic reorganization of biogeochemical cyclesNature, 376
R. Zeebe, D. Wolf‐Gladrow (2001)
CO2 in seawater: equilibrium, kinetics
K. Fennel, M. Follows, P. Falkowski (2005)
The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic oceanAmerican Journal of Science, 305
(1992)
Susceptibility of the early Earth to irreversible glacia189
R. Raiswell, C. Reinhard, A. Derkowski, J. Owens, S. Bottrell, A. Anbar, T. Lyons (2011)
Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formationGeochimica et Cosmochimica Acta, 75
A. Bachan, L. Kump (2015)
The rise of oxygen and siderite oxidation during the Lomagundi EventProceedings of the National Academy of Sciences, 112
M. Levasseur (2007)
Ocean Biogeochemical Dynamics, 14
G. Cowie, J. Hedges, F. Prahl, G. Lange (1995)
Elemental and major biochemical changes across an oxidation front in a relict turbidite: An oxygen effectGeochimica et Cosmochimica Acta, 59
A. Prokoph, G. Shields, J. Veizer (2008)
Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth historyEarth-Science Reviews, 87
Geological records of atmospheric oxygen suggest that pO2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there are three stable states for atmospheric oxygen, roughly corresponding to levels observed in the geological record. These stable states arise from a series of specific positive and negative feedbacks, requiring a large geochemical perturbation to the redox state to transition from one to another. In particular, we show that a very low oxygen level in the Archean (i.e., 10−7 PAL) is consistent with the presence of oxygenic photosynthesis and a robust organic carbon cycle. We show that the Snowball Earth glaciations, which immediately precede both transitions, provide an appropriate transient increase in atmospheric oxygen to drive the atmosphere either from its Archean state to its Proterozoic state, or from its Proterozoic state to its Phanerozoic state. This hypothesis provides a mechanistic explanation for the apparent synchronicity of the Proterozoic Snowball Earth events with both the Great Oxidation Event, and the Neoproterozoic oxidation.
Geobiology – Wiley
Published: May 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.