Access the full text.
Sign up today, get DeepDyve free for 14 days.
The previously developed multiscale method for concurrently coupling atomistic and continuum hydrodynamic representations of the same chemical substance is extended to consistently incorporate the Langevin‐type thermostat equations in the model. This allows not only to preserve the mass and momentum conservation laws based on the two‐phase flow analogy modeling framework but also to capture the correct local fluctuations and temperature in the pure atomistic region of the hybrid model. Numerical results for the test problem of equilibrium isothermal fluctuations of SPC/E water are presented. Advantages of using local thermostat equations adjusted for the multiresolution model for accurately capturing of the local water density in the atomistic part of the hybrid simulation domain are discussed. Comparisons with the reference pure all‐atom molecular dynamics simulations in GROMACS show that the suggested hybrid models are by a factor of 5–20 faster depending on the simulation domain size.
Advanced Theory and Simulations – Wiley
Published: Apr 1, 2021
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.