Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Jackson, R. Raiswell (1991)
Sedimentology and carbon-sulphur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern AustraliaPrecambrian Research, 54
A. Zumberge, G. Love, P. Cárdenas, E. Sperling, S. Gunasekera, M. Rohrssen, E. Grosjean, J. Grotzinger, R. Summons (2018)
Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animalsNature Ecology & Evolution, 2
S. R. Taylor, S. M. McLennan (1985)
In the continental crust: Its composition and evolution
C. Reinhard, N. Planavsky, L. Robbins, C. Partin, Benjamin Gill, S. Lalonde, A. Bekker, K. Konhauser, T. Lyons (2013)
Proterozoic ocean redox and biogeochemical stasisProceedings of the National Academy of Sciences, 110
M. Brasier, John Lindsay (1998)
A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia.Geology, 26 6
W. Seifert, J. Moldowan (1978)
Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oilsGeochimica et Cosmochimica Acta, 42
T. Algeo, T. Lyons (2006)
Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditionsPaleoceanography, 21
I. Crick (1992)
Petrological and maturation characteristics of organic matter from the Middle Proterozoic McArthur Basin, AustraliaAustralian Journal of Earth Sciences, 39
G. Luo, C. Hallmann, S. Xie, Xiaoyan Ruan, R. Summons (2015)
Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling FormationGeochimica et Cosmochimica Acta, 151
G. Luo, S. Ono, N. Beukes, David Wang, S. Xie, R. Summons (2016)
Rapid oxygenation of Earth’s atmosphere 2.33 billion years agoScience Advances, 2
H. Volk, S. George, A. Dutkiewicz, J. Ridley (2005)
Characterisation of fluid inclusion oil in a Mid-Proterozoic sandstone and dolerite (Roper Superbasin, Australia)Chemical Geology, 223
J. Brocks, G. Love, R. Summons, A. Knoll, G. Logan, S. Bowden (2005)
Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic seaNature, 437
R. Summons, T. Powell, C. Boreham (1988)
Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbonsGeochimica et Cosmochimica Acta, 52
S. Calvert, T. Pedersen (1993)
Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological recordMarine Geology, 113
D. Gold, Abigail Caron, G. Fournier, R. Summons (2017)
Paleoproterozoic sterol biosynthesis and the rise of oxygenNature, 543
A. Anbar, A. Knoll (2002)
Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?Science, 297
E. Grosjean, G. Logan (2007)
Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: Examples from Geoscience Australia marine survey S282Organic Geochemistry, 38
K. Takishita, Y. Chikaraishi, Goro Tanifuji, N. Ohkouchi, T. Hashimoto, K. Fujikura, A. Roger (2017)
Microbial Eukaryotes that Lack SterolsJournal of Eukaryotic Microbiology, 64
D. Canfield (1998)
A new model for Proterozoic ocean chemistryNature, 396
R. Summons, Dennis Taylor, C. Boreham (1994)
GEOCHEMICAL TOOLS FOR EVALUATING PETROLEUM GENERATION IN MIDDLE PROTEROZOIC SEDIMENTS OF THE McARTHUR BASIN, NORTHERN TERRITORY, AUSTRALIAThe APPEA Journal, 34
P. Farrimond, G. Love, A. Bishop, H. Innes, D. Watson, C. Snape (2003)
Evidence for the rapid incorporation of hopanoids into kerogenGeochimica et Cosmochimica Acta, 67
Yanan Shen, A. Knoll, M. Walter (2003)
Evidence for low sulphate and anoxia in a mid-Proterozoic marine basinNature, 423
G. Love, E. Grosjean, C. Stalvies, D. Fike, J. Grotzinger, A. Bradley, A. Kelly, M. Bhatia, W. Meredith, C. Snape, S. Bowring, D. Condon, R. Summons (2009)
Fossil steroids record the appearance of Demospongiae during the Cryogenian periodNature, 457
Vladimir Sergeev, A. Knoll, N. Vorob’eva, N. Sergeeva (2016)
Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European PlatformPrecambrian Research, 278
L. Och, G. Shields-Zhou (2012)
The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cyclingEarth-Science Reviews, 110
M. Radke, D. Welte (1983)
Advances in organic geochemistry 1981
T. Laakso, D. Schrag (2017)
A theory of atmospheric oxygenGeobiology, 15
C. Scott, T. Lyons, A. Bekker, A. Bekker, Yanan Shen, S. Poulton, X. Chu, A. Anbar (2008)
Tracing the stepwise oxygenation of the Proterozoic oceanNature, 452
S. Abbott, I. Sweet (2000)
Tectonic control on third‐order sequences in a siliciclastic ramp‐style basin: An example from the Roper Superbasin (Mesoproterozoic), northern AustraliaAustralian Journal of Earth Sciences, 47
M. Muir, T. Donnelly, R. Wilkins, K. Armstrong (1985)
Stable isotope, petrological, and fluid inclusion studies of minor mineral deposits from the McArthur Basin: Implications for the genesis of some sediment‐hosted base metal mineralization from the Northern TerritoryAustralian Journal of Earth Sciences, 32
T. Gibson, P. Shih, Vivien Cumming, W. Fischer, P. Crockford, M. Hodgskiss, S. Wörndle, R. Creaser, R. Rainbird, T. Skulski, G. Halverson (2017)
Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesisGeology, 46
K. French, C. Hallmann, C. Hallmann, P. Schoon, J. Zumberge, Y. Hoshino, C. Peters, S. George, G. Love, J. Brocks, R. Buick, R. Summons (2015)
Reappraisal of hydrocarbon biomarkers in Archean rocksProceedings of the National Academy of Sciences, 112
E. Sperling, A. Rooney, L. Hays, V. Sergeev, N. Vorob’eva, N. Sergeeva, D. Selby, D. Johnston, A. Knoll (2014)
Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean.Geobiology, 12 5
C. Partin, A. Bekker, N. Planavsky, C. Scott, Benjamin Gill, Chao Li, V. Podkovyrov, A. Maslov, K. Konhauser, S. Lalonde, G. Love, S. Poulton, T. Lyons (2013)
Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shalesEarth and Planetary Science Letters, 369
T. Lyons, S. Severmann (2006)
A critical look at iron paleoredox proxies: New insights from modern euxinic marine basinsGeochimica et Cosmochimica Acta, 70
E. Desmond, S. Gribaldo (2009)
Phylogenomics of Sterol Synthesis: Insights into the Origin, Evolution, and Diversity of a Key Eukaryotic FeatureGenome Biology and Evolution, 1
S. Poulton, D. Canfield (2005)
Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulatesChemical Geology, 214
Yanan Shen, D. Canfield, A. Knoll (2002)
Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern AustraliaAmerican Journal of Science, 302
S. Calvert, T. Pedersen (1996)
Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shalesEconomic Geology, 91
R. Raiswell, D. Canfield (1998)
Sources of iron for pyrite formation in marine sedimentsAmerican Journal of Science, 298
J. Beghin, Jean‐Yves Storme, C. Blanpied, N. Gueneli, J. Brocks, S. Poulton, E. Javaux (2017)
Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern AfricaPrecambrian Research, 291
L. Derry (2015)
Causes and consequences of mid‐Proterozoic anoxiaGeophysical Research Letters, 42
E. Suslova, T. Parfenova, S. Saraev, K. Nagovitsyn (2017)
Organic geochemistry of rocks of the Mesoproterozoic Malgin Formation and their depositional environments (southeastern Siberian Platform)Russian Geology and Geophysics, 58
C. Scott, T. Lyons (2012)
Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxiesChemical Geology, 324
A. Knoll, E. Javaux, D. Hewitt, Phoebe Cohen (2006)
Eukaryotic organisms in Proterozoic oceansPhilosophical Transactions of the Royal Society B: Biological Sciences, 361
M. Jackson, T. Powell, R. Summons, I. Sweet (1986)
Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 yearsNature, 322
D. Canfield, R. Raiswell, J. Westrich, C. Reaves, R. Berner (1986)
The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shalesChemical Geology, 54
D. Hardisty, Zunli Lu, A. Bekker, C. Diamond, Benjamin Gill, G. Jiang, L. Kah, A. Knoll, S. Loyd, M. Osburn, N. Planavsky, Chunjiang Wang, Xiaoli Zhou, T. Lyons (2017)
Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonateEarth and Planetary Science Letters, 463
N. Planavsky, P. McGoldrick, C. Scott, Chao Li, C. Reinhard, A. Kelly, X. Chu, A. Bekker, G. Love, T. Lyons (2011)
Widespread iron-rich conditions in the mid-Proterozoic oceanNature, 477
S. Poulton, D. Canfield (2011)
Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's HistoryElements, 7
E. Javaux, A. Knoll, M. Walter (2004)
TEM evidence for eukaryotic diversity in mid‐Proterozoic oceansGeobiology, 2
M. J. Jackson, I. P. Sweet, R. W. Page, B. E. Bradshaw (1999)
Integrated basin analysis of the Isa superbasin using seismic, well‐log, and geopotential data: An evaluation of the economic potential of the Northern Lawn Hill Platform
A. Bekker, H. Holland, Pei-Ling Wang, D. Rumble, H. Stein, J. Hannah, Louis Coetzee, N. Beukes (2004)
Dating the rise of atmospheric oxygenNature, 427
G. Love, C. Snape, A. Carr, Richard Houghton (1995)
Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysisOrganic Geochemistry, 23
J. Brocks, A. Jarrett, E. Sirantoine, F. Kenig, M. Moczydłowska, S. Porter, J. Hope (2016)
Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball EarthGeobiology, 14
P. Froelich, G. Klinkhammer, M. Bender, Nile Luedtke, G. Heath, Douglas Cullen, Paul Dauphin, D. Hammond, B. Hartman, V. Maynard (1979)
Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesisGeochimica et Cosmochimica Acta, 43
Shuai Yang, B. Kendall, Xinze Lu, Feifei Zhang, Wang Zheng (2017)
Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flowPrecambrian Research, 298
T. Lyons, C. Reinhard, C. Scott (2009)
Redox ReduxGeobiology, 7
Indranil Mukherjee, R. Large (2016)
Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric oxygenation during the Boring BillionPrecambrian Research, 281
J. Warren, S. George, P. Hamilton, P. Tingate (1998)
Proterozoic Source Rocks: Sedimentology and Organic Characteristics of the Velkerri Formation, Northern Territory, AustraliaAAPG Bulletin, 82
D. Canfield, R. Raiswell, S. Bottrell (1992)
The reactivity of sedimentary iron minerals toward sulfideAmerican Journal of Science, 292
M. J. Jackson, I. Sweet, T. G. Powell (1988)
Petroleum geology and geochemistry of the Middle Proterozoic, McArthur Basin, Northern Australia. I: Petroleum potential, 28
Jeremy Wei, Xinchi Yin, P. Welander (2016)
Sterol Synthesis in Diverse BacteriaFrontiers in Microbiology, 7
J. Brocks (2011)
Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?Geochimica et Cosmochimica Acta, 75
H. Volk, A. Dutkiewicz, S. George, J. Ridley (2003)
Oil migration in the Middle Proterozoic Roper Superbasin,Australia: evidence from oil inclusions and their geochemistriesJournal of Geochemical Exploration
T. Lyons, C. Reinhard, N. Planavsky (2014)
The rise of oxygen in Earth’s early ocean and atmosphereNature, 506
R. Raiswell, F. Buckley, R. Berner, T. Anderson (1988)
Degree of Pyritization of Iron as a Paleoenvironmental Indicator of Bottom-Water OxygenationJournal of Sedimentary Research, 58
T. Lyons (1997)
Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black SeaGeochimica et Cosmochimica Acta, 61
T. Isson, G. Love, C. Dupont, C. Reinhard, A. Zumberge, D. Asael, B. Guéguen, J. McCrow, Benjamin Gill, J. Owens, R. Rainbird, A. Rooney, Mingyu Zhao, Eva Stueeken, K. Konhauser, S. John, T. Lyons, N. Planavsky (2018)
Tracking the rise of eukaryotes to ecological dominance with zinc isotopesGeobiology, 16
D. Canfield, J. Farquhar, A. Zerkle (2010)
High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analogGeology, 38
B. Kendall, R. Creaser, G. Gordon, A. Anbar (2009)
Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern AustraliaGeochimica et Cosmochimica Acta, 73
A. Dutkiewicz, H. Volk, J. Ridley, S. George (2003)
Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, AustraliaGeology, 31
K. E. Peters, C. C. Walters, J. M. Moldowan (2005)
The biomarker guide
Emma Flannery, S. George (2014)
Assessing the syngeneity and indigeneity of hydrocarbons in the ∼1.4 Ga Velkerri Formation, McArthur Basin, using slice experimentsOrganic Geochemistry, 77
L. Parfrey, Daniel Lahr, Andrew Knoll, Laura Katz (2011)
Estimating the timing of early eukaryotic diversification with multigene molecular clocksProceedings of the National Academy of Sciences, 108
M. Blumenberg, V. Thiel, W. Riegel, L. Kah, J. Reitner (2012)
Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, MauritaniaPrecambrian Research
N. Tribovillard, T. Algeo, T. Lyons, A. Riboulleau (2006)
Trace metals as paleoredox and paleoproductivity proxies: An updateChemical Geology, 232
E. Javaux, A. Knoll, M. Walter (2001)
Morphological and ecological complexity in early eukaryotic ecosystemsNature, 412
D. Johnston, F. Wolfe-Simon, A. Pearson, A. Knoll (2009)
Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle ageProceedings of the National Academy of Sciences, 106
R. Buick, D. Marais, Andrew Knoll (1995)
Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia.Chemical geology, 123 1-4
C. Reinhard, N. Planavsky, Benjamin Gill, K. Ozaki, L. Robbins, T. Lyons, W. Fischer, Chunjiang Wang, D. Cole, K. Konhauser (2016)
Evolution of the global phosphorus cycleNature, 541
L. Kah, T. Lyons, T. Frank (2004)
Low marine sulphate and protracted oxygenation of the Proterozoic biosphereNature, 431
J. Brocks, A. Jarrett, E. Sirantoine, C. Hallmann, Y. Hoshino, T. Liyanage (2017)
The rise of algae in Cryogenian oceans and the emergence of animalsNature, 548
M. Pawlowska, N. Butterfield, J. Brocks (2013)
Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservationGeology, 41
By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate–carbon isotope data. Despite the first appearance and early innovation among eukaryotic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diversity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3–1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid‐Proterozoic redox landscape. The group is well dated and minimally metamorphosed (of oil window maturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid‐Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indicators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace‐metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predominantly below the photic zone during the deposition of organic‐rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4‐desmethylsteranes) and only traces of gammacerane in some samples—despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker alkanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long‐term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine microbial communities. Given that molecular clocks predict that sterol synthesis evolved early in eukaryotic history, and (bacterial) fossil steroids have been found previously in 1.64 Ga rocks, then a very low environmental abundance of eukaryotes relative to bacteria is our preferred explanation for the lack of regular steranes and only traces of gammacerane in a few samples. It is also possible that early eukaryotes adapted to Mesoproterozoic marine environments did not make abundant steroid lipids or tetrahymanol in their cell membranes.
Geobiology – Wiley
Published: May 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.