Access the full text.
Sign up today, get DeepDyve free for 14 days.
Michael Wang, Rishav Choudhury, J. Sakamoto (2019)
Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current DensityJoule
C. Heubner, S. Maletti, Henry Auer, J. Hüttl, K. Voigt, Oliver Lohrberg, K. Nikolowski, M. Partsch, A. Michaelis (2021)
From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and ChallengesAdvanced Functional Materials, 31
A. Louli, A. Eldesoky, Rochelle Weber, Rochelle Weber, M. Genovese, Matt Coon, Jack deGooyer, Zhe Deng, Robin White, Jaehan Lee, Thomas Rodgers, R. Petibon, Sunny Hy, Shawn Cheng, J. Dahn (2020)
Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysisNature Energy
M. Motoyama, Makoto Ejiri, Y. Iriyama (2016)
Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON InterfacesJournal of The Electrochemical Society, 162
Michael Wang, Eric Carmona, Arushi Gupta, P. Albertus, J. Sakamoto (2020)
Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ platingNature Communications, 11
Jiangfeng Qian, Brian Adams, Jianming Zheng, Wu Xu, W. Henderson, Jun Wang, M. Bowden, Suochang Xu, J. Hu, Ji‐Guang Zhang (2016)
Anode‐Free Rechargeable Lithium Metal BatteriesAdvanced Functional Materials, 26
J. Janek, W. Zeier (2016)
A solid future for battery developmentNature Energy, 1
Y. Zhao, R. Wang, E. Mart'inez-Paneda (2022)
A phase field electro-chemo-mechanical formulation for predicting void evolution at the Li-electrolyte interface in all-solid-state batteriesArXiv, abs/2206.14753
Michael Lee, Junghun Han, Kyungbin Lee, Young Lee, Byoung Kim, Kyu-Nam Jung, Bumjoon Kim, Seung Lee (2022)
Elastomeric electrolytes for high-energy solid-state lithium batteriesNature, 601
Yanbin Shen, Yantao Zhang, Shaojie Han, Jiawei Wang, Zhangquan Peng, Liwei Chen (2018)
Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State ElectrolytesJoule
Christos Athanasiou, Xing Liu, Mok Jin, E. Nimon, S. Visco, Cholho Lee, Myounggu Park, Junnyeong Yun, N. Padture, Huajian Gao, B. Sheldon (2022)
Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteriesCell Reports Physical Science
Thorben Krauskopf, R. Dippel, H. Hartmann, Klaus Peppler, B. Mogwitz, Felix Richter, W. Zeier, J. Janek (2019)
Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid ElectrolytesJoule
Kevin Wood, G. Teeter (2018)
XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge CorrectionACS Applied Energy Materials
Rochelle Weber, Rochelle Weber, M. Genovese, A. Louli, S. Hames, Cameron Martin, I. Hill, J. Dahn (2019)
Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyteNature Energy
Jean-Marie Doux, Han Nguyen, Darren Tan, A. Banerjee, Xuefeng Wang, Erik Wu, Chiho Jo, Hedi Yang, Y. Meng (2019)
Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal BatteriesAdvanced Energy Materials, 10
Gustavo Hobold, Jeffrey Lopez, Ruiduo Guo, Nicoló Minafra, A. Banerjee, Y. Meng, Y. Shao-horn, Betar Gallant (2021)
Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytesNature Energy, 6
Wenbo Zhang, D. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, Raimund Koerver, T. Leichtweiss, P. Hartmann, W. Zeier, J. Janek (2017)
Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries.ACS applied materials & interfaces, 9 21
M. Papakyriakou, Mu Lu, Yuhgene Liu, Zhantao Liu, Hailong Chen, M. McDowell, S. Xia (2021)
Mechanical behavior of inorganic lithium-conducting solid electrolytesJournal of Power Sources
S. Nanda, Abhay Gupta, A. Manthiram (2020)
Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal BatteriesAdvanced Energy Materials, 11
Andrew Davis, E. Kazyak, Daniel Liao, Kevin Wood, N. Dasgupta (2021)
Operando Analysis of Interphase Dynamics in Anode-Free Solid-State Batteries with Sulfide ElectrolytesJournal of The Electrochemical Society
J. Lewis, Francisco Cortes, Yuhgene Liu, J. Miers, A. Verma, B. Vishnugopi, Jared Tippens, Dhruv Prakash, Thomas Marchese, S. Han, Chanhee Lee, Pralav Shetty, Hyun‐Wook Lee, P. Shevchenko, F. Carlo, C. Saldana, P. Mukherjee, M. McDowell (2020)
Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomographyNature Materials, 20
P. Albertus, S. Babinec, S. Litzelman, Aron Newman (2017)
Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteriesNature Energy, 3
Svenja-K. Otto, L. Riegger, Till Fuchs, S. Kayser, P. Schweitzer, S. Burkhardt, A. Henss, J. Janek (2022)
In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMSAdvanced Materials Interfaces, 9
Yong-Gun Lee, S. Fujiki, C. Jung, N. Suzuki, Nobuyoshi Yashiro, Ryo Omoda, D. Ko, Tomoyuki Shiratsuchi, Toshinori Sugimoto, Saebom Ryu, J. Ku, Taku Watanabe, Youngsin Park, Y. Aihara, D. Im, I. Han (2020)
High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodesNature Energy, 5
E. Cheng, Asma Sharafi, J. Sakamoto (2017)
Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyteElectrochimica Acta, 223
E. Kazyak, Regina Garcia‐Mendez, W. LePage, Asma Sharafi, Andrew Davis, Adrian Sanchez, Kuan-Hung Chen, Catherine Haslam, J. Sakamoto, N. Dasgupta (2020)
Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and ReversibilityMatter
Sewon Kim, C. Jung, Hyun-Seok Kim, Karen Thomas-Alyea, Gabin Yoon, Byunghoon Kim, M. Badding, Zhen Song, Jaemyung Chang, Ju-Sik Kim, D. Im, K. Kang (2020)
The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid ElectrolyteAdvanced Energy Materials, 10
Z. Ning, Dominic Jolly, Guanchen Li, R. Meyere, S. Pu, Yang Chen, Jitti Kasemchainan, J. Ihli, Chen Gong, Boyang Liu, Dominic Melvin, A. Bonnin, O. Magdysyuk, P. Adamson, Gareth Hartley, C. Monroe, T. Marrow, P. Bruce (2021)
Visualizing plating-induced cracking in lithium-anode solid-electrolyte cellsNature Materials, 20
Jie Xiao, Jie Xiao, Qiuyan Li, Yujing Bi, Mei Cai, B. Dunn, Tobias Glossmann, J. Liu, Jun Liu, T. Osaka, R. Sugiura, Bingbin Wu, Jihui Yang, Ji‐Guang Zhang, M. Whittingham (2020)
Understanding and applying coulombic efficiency in lithium metal batteriesNature Energy
Thorben Krauskopf, H. Hartmann, W. Zeier, J. Janek (2019)
Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12.ACS applied materials & interfaces, 11 15
L. Porz, T. Swamy, B. Sheldon, D. Rettenwander, T. Frömling, Henry Thaman, S. Berendts, R. Uecker, W. Carter, Y. Chiang (2017)
Mechanism of Lithium Metal Penetration through Inorganic Solid ElectrolytesAdvanced Energy Materials, 7
Sebastian Wenzel, S. Sedlmaier, C. Dietrich, W. Zeier, J. Janek (2017)
Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodesSolid State Ionics, 318
R. Salvatierra, Weiyin Chen, J. Tour (2021)
What Can be Expected from “Anode‐Free” Lithium Metal Batteries?
J. Lewis, Chanhee Lee, Yuhgene Liu, S. Han, Dhruv Prakash, E. Klein, Hyun‐Wook Lee, M. McDowell (2022)
Role of Areal Capacity in Determining Short Circuiting of Sulfide-Based Solid-State Batteries.ACS applied materials & interfaces
Chanhee Lee, S. Han, J. Lewis, Pralav Shetty, David Yeh, Yuhgene Liu, E. Klein, Hyun‐Wook Lee, M. McDowell (2021)
Stack Pressure Measurements to Probe the Evolution of the Lithium–Solid-State Electrolyte InterfaceACS Energy Letters
Theodosios Famprikis, Theodosios Famprikis, Theodosios Famprikis, P. Canepa, P. Canepa, P. Canepa, J. Dawson, J. Dawson, M. Islam, M. Islam, C. Masquelier, C. Masquelier (2019)
Fundamentals of inorganic solid-state electrolytes for batteriesNature Materials
S. Han, Chanhee Lee, J. Lewis, David Yeh, Yuhgene Liu, Hyun‐Wook Lee, M. McDowell (2021)
Stress evolution during cycling of alloy-anode solid-state batteriesJoule
Xiao Ji, S. Hou, Peng-fei Wang, Xinzi He, Nan Piao, Ji Chen, Xiulin Fan, Chunsheng Wang (2020)
Solid‐State Electrolyte Design for Lithium Dendrite SuppressionAdvanced Materials, 32
Jitti Kasemchainan, Stefanie Zekoll, Dominic Jolly, Z. Ning, Gareth Hartley, J. Marrow, P. Bruce (2019)
Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cellsNature Materials
K. Hatzell, X. Chen, C. Cobb, N. Dasgupta, Marm Dixit, Lauren Marbella, M. McDowell, P. Mukherjee, A. Verma, V. Viswanathan, A. Westover, W. Zeier (2020)
Challenges in Lithium Metal Anodes for Solid-State BatteriesACS energy letters, 5
Kiwoon Lee, E. Kazyak, Michael Wang, N. Dasgupta, J. Sakamoto (2022)
Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZOJoule
“Anode‐free” solid‐state batteries (SSBs), which have no anode active material, can exhibit extremely high energy density (≈1500 Wh L−1). However, there is a lack of understanding of the lithium plating/stripping mechanisms at initially lithium‐free solid‐state electrolyte (SSE) interfaces because excess lithium metal is often used. Here, it is demonstrated that commercially relevant quantities of lithium (>5 mAh cm−2) can be reliably plated at moderate current densities (1 mA cm−2) using the sulfide SSE Li6PS5Cl. Investigations of lithium plating/stripping mechanisms, in conjunction with cryo‐focused ion beam (FIB) imaging, synchrotron tomography, and phase‐field modeling, reveal that the cycling stability of these cells is fundamentally limited by the nonuniform presence of lithium during stripping. Local lithium depletion causes isolated lithium regions toward the end of stripping, decreasing electrochemically active area and resulting in high local current densities and void formation. This accelerates subsequent filament growth and short circuiting compared to lithium‐excess cells. Despite this degradation mode, it is shown that anode‐free cells exhibit comparable Coulombic efficiency to lithium‐excess cells, and improved resistance to short circuiting is achieved by avoiding local lithium depletion through retention of thicker lithium at the interface. These new insights provide a foundation for engineering future high‐energy anode‐free SSBs.
Advanced Energy Materials – Wiley
Published: Mar 1, 2023
Keywords: electrochemistry; energy storage; lithium metal anodes; solid‐state batteries; X‐ray tomography
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.