Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, a novel adaptive fault‐tolerant control (FTC) scheme is proposed for a class of flexible air‐breathing hypersonic vehicles with unknown inertial and aerodynamic parameters and even input constraints. The fault model under consideration covers the case that all actuators suffer from unknown time‐varying faults. In the controller design and stability analysis, we introduce new Lyapunov functions, some differentiable auxiliary functions, a bound estimation approach, and a Nussbaum function, which help us successfully circumvent the obstacle caused by the faults, input constraints, and flexible modes. In addition to higher reliability, the proposed scheme is able to ensure that all closed‐loop signals are globally uniformly bounded and to steer the tracking errors of altitude and velocity into predefined arbitrarily small residual sets. As a result, the tracking accuracy can be designated in advance. Simulation results illustrate the effectiveness of the proposed scheme.
Asian Journal of Control – Wiley
Published: Mar 19, 2023
Keywords: air‐breathing hypersonic vehicles; adaptive control; fault‐tolerant control; input constraints; uncertainties
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.