Access the full text.
Sign up today, get DeepDyve free for 14 days.
Risk management is an important issue when there is a catastrophic event that affects asset price in the market such as a sub‐prime financial crisis or other financial crisis. By adding a jump term in the geometric Brownian motion, the jump diffusion model can be used to describe abnormal changes in asset prices when there is a serious event in the market. In this paper, we propose an importance sampling algorithm to compute the Value‐at‐Risk for linear and nonlinear assets under a multi‐variate jump diffusion model. To be more precise, an efficient computational procedure is developed for estimating the portfolio loss probability for linear and nonlinear assets with jump risks. And the titling measure can be separated for the diffusion and the jump part under the assumption of independence. The simulation results show that the efficiency of importance sampling improves over the naive Monte Carlo simulation from 7 times to 285 times under various situations. We also show the robustness of the importance sampling algorithm by comparing it with the EVT‐Copula method proposed by Oh and Moon (2006).
Asia-Pacific Journal of Financial Studies – Wiley
Published: Jan 1, 2009
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.