Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Ohara, M. Nagai, K. Tani, T. Tsukamoto, Yasuo Suzuki, K. Ohara (1998)
Polymorphism in the promoter region of the α2A adrenergic receptor gene and mood disordersNeuroReport, 9
S. Cichon, J. Schumacher, Daniel Müller, Martina Hürter, C. Windemuth, Nicolas Produit, S. Hemmer, T. Schulze, G. Schmidt-Wolf, M. Albus, M. Borrmann-Hassenbach, E. Franzek, M. Lanczik, Jürgen Fritze, R. Kreiner, U. Reuner, B. Weigelt, J. Minges, D. Lichtermann, B. Lerer, K. Kanyas, M. Baur, T. Wienker, Wolfgang Maier, M. Rietschel, P. Propping, M. Nöthen (2001)
A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q.Human molecular genetics, 10 25
Shirley Miller, D. Dykes, H. Polesky (1988)
A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic acids research, 16 3
R. Jamra, J. Schumacher, A. Golla, C. Richter, Andreas Otte, T. Schulze, S. Ohlraun, W. Maier, M. Rietschel, S. Cichon, P. Propping, M. Nöthen (2004)
Family‐based association studies of α‐adrenergic receptor genes in chromosomal regions with linkage to bipolar affective disorderAmerican Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 126B
E. Wong, M. Sonders, S. Amara, Paula Tinholt, M. Piercey, William Hoffmann, D. Hyslop, S. Franklin, R. Porsolt, A. Bonsignori, N. Carfagna, R. Mcarthur (2000)
Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitorBiological Psychiatry, 47
B. Leonard (1997)
Noradrenaline in basic models of depressionEuropean Neuropsychopharmacology, 7
P. Zill, T. Baghai, R. Engel, P. Zwanzger, C. Schüle, C. Minov, S. Behrens, R. Bottlender, M. Jäger, R. Rupprecht, H. Möller, M. Ackenheil, B. Bondy (2003)
Beta‐1‐adrenergic receptor gene in major depression: Influence on antidepressant treatment responseAmerican Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 120B
Joel Sherrill, Maria Kovacs (2000)
Interview schedule for children and adolescents (ISCA).Journal of the American Academy of Child and Adolescent Psychiatry, 39 1
G. Zubenko, B. Maher, H. Hughes, W. Zubenko, J. Stiffler, B. Kaplan, M. Marazita (2003)
Genome‐wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early‐onset, major depressionAmerican Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 123B
Z. Wang, R. Crowe, V. Tanna, G. Winokur (1992)
Alpha 2 adrenergic receptor subtypes in depression: a candidate gene study.Journal of affective disorders, 25 3
R. Jamra, J. Schumacher, A. Golla, C. Richter, Andreas Otte, T. Schulze, S. Ohlraun, W. Maier, M. Rietschel, S. Cichon, P. Propping, M. Nöthen (2004)
Family-based association studies of alpha-adrenergic receptor genes in chromosomal regions with linkage to bipolar affective disorder.American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 126B 1
A. Schatzberg (1998)
Noradrenergic versus serotonergic antidepressants: predictors of treatment response.The Journal of clinical psychiatry, 59 Suppl 14
D. Clayton (1999)
A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission.American journal of human genetics, 65 4
P. Sham, D. Curtis (1995)
An extended transmission/disequilibrium test (TDT) for multi‐allele marker lociAnnals of Human Genetics, 59
K. Ressler, C. Nemeroff (2000)
Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disordersDepression and Anxiety, 12
W. Byerley, M. Hoff, J. Holik, H. Coon (1994)
A linkage study with D5 dopamine and α2C‐adrenergic receptor genes in six multiplex bipolar pedigreesPsychiatric Genetics, 4
D. Blackwood, Lin He, Stewart Morris, A. McLean, C. Whitton, M. Thomson, Maura Walker, K. Woodburn, Cliff Sharp, Allan Wright,, Y. Shibasaki, D. Clair, David Poreous, Walter Muir (1996)
A locus for bipolar affective disorder on chromosome 4pNature Genetics, 12
J. Barrett, B. Fry, J. Maller, M. Daly (2005)
Haploview: analysis and visualization of LD and haplotype mapsBioinformatics, 21 2
N. Risch, K. Merikangas (1996)
The Future of Genetic Studies of Complex Human DiseasesScience, 273
R. Berman, M. Narasimhan, H. Miller, A. Anand, A. Cappiello, D. Oren, G. Heninger, D. Charney (1999)
Transient depressive relapse induced by catecholamine depletion: potential phenotypic vulnerability marker?Archives of general psychiatry, 56 5
K. Shibata, A. Hirasawa, N. Moriyama, K. Kawabe, S. Ogawa, G. Tsujimoto (1996)
α1a‐Adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophyBritish Journal of Pharmacology, 118
Jennifer Adams, K. Wigg, N. King, Irina Burcescu, Á. Vetró, E. Kiss, I. Baji, C. George, J. Kennedy, M. Kovács, C. Barr (2005)
Association study of neurotrophic tyrosine kinase receptor type 2 (NTRK2) and childhood‐onset mood disordersAmerican Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 132B
H. Ewald, T. Flint, T. Kruse, O. Mors (2002)
A genome-wide scan shows significant linkage between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromosomes 1p22–21, 4p16, 6q14–22, 10q26 and 16p13.3Molecular Psychiatry, 7
J. Kelsoe, M. Spence, E. Loetscher, M. Foguet, A. Sadovnick, R. Remick, P. Flodman, J. Khristich, Z. Mroczkowski-Parker, John Brown, Diane Masser, Sharon Ungerleider, M. Rapaport, W. Wishart, H. Luebbert (2001)
A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22.Proceedings of the National Academy of Sciences of the United States of America, 98 2
D. Charney (1998)
Monoamine dysfunction and the pathophysiology and treatment of depression.The Journal of clinical psychiatry, 59 Suppl 14
P. Delgado, F. Moreno (2000)
Role of norepinephrine in depression.The Journal of clinical psychiatry, 61 Suppl 1
N. Brunello, P. Blier, L. Judd, J. Mendlewicz, C. Nelson, D. Souery, J. Zohar, G. Racagni (2003)
Noradrenaline in mood and anxiety disorders: basic and clinical studiesInternational Clinical Psychopharmacology, 18
A. Schatzberg (1998)
Dr. Schatzberg RepliesThe Journal of Clinical Psychiatry, 59
The adrenergic system has been implicated in the etiology of depression based on a number of lines of evidence, particularly, the mechanism of some classes of antidepressants which increase the synaptic levels of norepinephrine. Further, several genome scans for mood disorders, both unipolar and bipolar, have indicated linkage to the chromosomal regions of 5q23–q33.3, 8p12–p11.2, 4p16, and 10q24–q26, the location of the adrenergic receptors α1B (ADRA1B), β3 (ADRB3), α2C (ADRA2C), α2A (ADRA2A), and β1 (ADRB1). In this manuscript, we report on the relationship of the adrenergic receptors and depression using a family based association approach and 189 families (223 affected children) with childhood‐onset mood disorder (COMD) collected in Hungary. We found no significant evidence for an association with any of the 24 markers, in total, tested across these genes using single marker analysis or haplotypes of markers across these genes. The results in the present sample indicate that these nine genes are unlikely to be major susceptibility genes contributing to COMD. © 2006 Wiley‐Liss, Inc.
American Journal of Medical Genetics part B – Wiley
Published: Apr 5, 2006
Keywords: adrenergic receptors; child; depression; genetics; mood disorders; gene
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.