Access the full text.
Sign up today, get DeepDyve free for 14 days.
Joseph Redmon, Ali Farhadi (2018)
YOLOv3: An Incremental ImprovementArXiv, abs/1804.02767
A. Miller‐Rushing, D. Inouye, R. Primack (2008)
How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequencyJournal of Ecology, 96
A. Arft, M. Walker, J. Gurevitch, J. Alatalo, M. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, G. Henry, Michael Jones, R. Hollister, I. Jónsdóttir, K. Laine, E. Lévesque, G. Marion, U. Molau, P. Mølgaard, U. Nordenhäll, V. Raszhivin, C. Robinson, G. Starr, A. Stenström, M. Stenström, Ø. Totland, P. Turner, L. Walker, P. Webber, J. Welker, P. Wookey (1999)
RESPONSES OF TUNDRA PLANTS TO EXPERIMENTAL WARMING:META‐ANALYSIS OF THE INTERNATIONAL TUNDRA EXPERIMENTEcological Monographs, 69
C. Parmesan (2006)
Ecological and Evolutionary Responses to Recent Climate ChangeAnnual Review of Ecology, Evolution, and Systematics, 37
Abhishek Dutta, Andrew Zisserman (2019)
The VIA Annotation Software for Images, Audio and VideoProceedings of the 27th ACM International Conference on Multimedia
Jianwu Tang, C. Körner, H. Muraoka, S. Piao, M. Shen, S. Thackeray, Xi Yang (2016)
Emerging opportunities and challenges in phenology: a reviewEcosphere, 7
D. Koide, R. Ide, H. Oguma (2019)
Detection of autumn leaf phenology and color brightness from repeat photography: Accurate, robust, and sensitive indexes and modeling under unstable field observationsEcological Indicators
J. Welker, U. Molau, A. Parsons, C. Robinson, P. Wookey (1997)
Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisonsGlobal Change Biology, 3
S. Pimm, S. Alibhai, R. Bergl, A. Dehgan, C. Giri, Zoe Jewell, L. Joppa, R. Kays, S. Loarie (2015)
Emerging Technologies to Conserve Biodiversity.Trends in ecology & evolution, 30 11
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (2015)
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksIEEE Transactions on Pattern Analysis and Machine Intelligence, 39
D. Metcalfe, T. Hermans, Jenny Ahlstrand, M. Becker, M. Berggren, R. Björk, Mats Björkman, D. Blok, Nitin Chaudhary, Chelsea Chisholm, A. Classen, N. Hasselquist, M. Jonsson, J. Kristensen, Bright Kumordzi, Hanna Lee, J. Mayor, J. Prevéy, K. Pantazatou, J. Rousk, R. Sponseller, Maja Sundqvist, Jing Tang, J. Uddling, G. Wallin, Wenxing Zhang, A. Ahlström, D. Tenenbaum, A. Abdi (2018)
Patchy field sampling biases understanding of climate change impacts across the ArcticNature Ecology & Evolution, 2
Joseph Redmon, S. Divvala, Ross Girshick, Ali Farhadi (2015)
You Only Look Once: Unified, Real-Time Object Detection2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
D. Murray (1997)
Systematics of the ITEX speciesGlobal Change Biology, 3
(2021)
Arctic climate change update 2021: key trends and impacts
A. Beamish, M. Raynolds, H. Epstein, G. Frost, M. Macander, H. Bergstedt, A. Bartsch, S. Kruse, V. Miles, C. Tanis, B. Heim, M. Fuchs, S. Chabrillat, I. Shevtsova, Mariana Verdonen, J. Wagner (2020)
Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlookRemote Sensing of Environment, 246
Martín Abadi, P. Barham, Jianmin Chen, Z. Chen, Andy Davis, J. Dean, Matthieu Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, Sherry Moore, D. Murray, Benoit Steiner, P. Tucker, Vijay Vasudevan, P. Warden, M. Wicke, Yuan Yu, Xiaoqiang Zhang (2016)
TensorFlow: A system for large-scale machine learning
J. Prevéy, S. Elmendorf, Anne Bjorkman, J. Alatalo, Isabel Ashton, Jakob Assmann, R. Björk, Mats Björkman, N. Cannone, M. Carbognani, Chelsea Chisholm, Karin Clark, Courtney Collins, E. Cooper, B. Elberling, E. Frei, G. Henry, R. Hollister, T. Høye, I. Jónsdóttir, Jeffrey Kerby, K. Klanderud, C. Kopp, E. Lévesque, M. Mauritz, U. Molau, I. Myers-Smith, S. Natali, S. Oberbauer, Zoe Panchen, A. Petraglia, E. Post, C. Rixen, H. Rodenhizer, S. Rumpf, N. Schmidt, E. Schuur, P. Semenchuk, Jane Smith, K. Suding, Orjan Toteland, T. Troxler, Henrik Wahrén, J. Welker, S. Wipf, Yue Yang (2021)
The tundra phenology database: More than two decades of tundra phenology responses to climate change
Ben. Weinstein (2018)
A computer vision for animal ecology.The Journal of animal ecology, 87 3
Timothy Brown, K. Hultine, H. Steltzer, E. Denny, Michael Denslow, Joel Granados, S. Henderson, D. Moore, S. Nagai, M. SanClements, A. Sánchez-Azofeifa, O. Sonnentag, D. Tazik, A. Richardson (2016)
Using phenocams to monitor our changing Earth: toward a global phenocam networkFrontiers in Ecology and the Environment, 14
N. Fox, A. Jönsson (2019)
Climate effects on the onset of flowering in the United KingdomEnvironmental Sciences Europe, 31
D. Tran, T. Høye, M. Gabbouj, Alexandros Iosifidis (2018)
Automatic Flower and Visitor Detection System2018 26th European Signal Processing Conference (EUSIPCO)
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean (2016)
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ?16)
M. Philipp, H. Siegismund (2003)
What can morphology and isozymes tell us about the history of the Dryas integrifolia–octopetala complex?Molecular Ecology, 12
Huaizu Jiang, E. Learned-Miller (2016)
Face Detection with the Faster R-CNN2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)
J. Prevéy, C. Rixen, N. Rüger, T. Høye, Anne Bjorkman, I. Myers-Smith, S. Elmendorf, Isabel Ashton, N. Cannone, Chelsea Chisholm, Karin Clark, E. Cooper, B. Elberling, A. Fosaa, G. Henry, R. Hollister, I. Jónsdóttir, K. Klanderud, C. Kopp, E. Lévesque, M. Mauritz, U. Molau, S. Natali, S. Oberbauer, Zoe Panchen, E. Post, S. Rumpf, N. Schmidt, E. Schuur, P. Semenchuk, Jane Smith, K. Suding, Ø. Totland, T. Troxler, S. Venn, C. Wahren, J. Welker, S. Wipf (2018)
Warming shortens flowering seasons of tundra plant communitiesNature Ecology & Evolution, 3
Shaohua Wan, S. Goudos (2020)
Faster R-CNN for multi-class fruit detection using a robotic vision systemComput. Networks, 168
Rianne Diepstraten, Tyler Jessen, C. Fauvelle, M. Musiani (2018)
Does climate change and plant phenology research neglect the Arctic tundra?Ecosphere
M. Nilsback, Andrew Zisserman (2008)
Automated Flower Classification over a Large Number of Classes2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing
Abadi M. (2016)
265
M. Visser, C. Both (2005)
Shifts in phenology due to global climate change: the need for a yardstickProceedings of the Royal Society B: Biological Sciences, 272
A. Iler, T. Høye, D. Inouye, N. Schmidt (2013)
Nonlinear flowering responses to climate: are species approaching their limits of phenological change?Philosophical Transactions of the Royal Society B: Biological Sciences, 368
Sylvain Christin, É. Hervet, N. Lecomte (2018)
Applications for deep learning in ecologybioRxiv
E. Post, T. Høye (2013)
Advancing the long view of ecological change in tundra systemsPhilosophical Transactions of the Royal Society B: Biological Sciences, 368
B. Inouye, J. Ehrlén, N. Underwood (2019)
Phenology as a process rather than an event: from individual reaction norms to community metricsEcological Monographs
T. Høye, E. Post, H. Meltofte, N. Schmidt, M. Forchhammer (2007)
Rapid advancement of spring in the High ArcticCurrent Biology, 17
Courtney Collins, S. Elmendorf, R. Hollister, G. Henry, Karin Clark, Anne Bjorkman, I. Myers-Smith, J. Prevéy, Isabel Ashton, Jakob Assmann, J. Alatalo, M. Carbognani, Chelsea Chisholm, E. Cooper, Chiara Forrester, I. Jónsdóttir, K. Klanderud, C. Kopp, C. Livensperger, M. Mauritz, J. May, U. Molau, S. Oberbauer, Emily Ogburn, Zoe Panchen, A. Petraglia, E. Post, C. Rixen, H. Rodenhizer, E. Schuur, P. Semenchuk, Jane Smith, H. Steltzer, Ø. Totland, M. Walker, J. Welker, K. Suding (2021)
Experimental warming differentially affects vegetative and reproductive phenology of tundra plantsNature Communications, 12
Yu Jiang, Changying Li, R. Xu, Shangpeng Sun, Jon Robertson, A. Paterson (2020)
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the fieldPlant Methods, 16
E. Schuettpelz, P. Frandsen, Rebecca Dikow, Abel Brown, Sylvia Orli, Melinda Peters, Adam Metallo, V. Funk, L. Dorr (2017)
Applications of deep convolutional neural networks to digitized natural history collectionsBiodiversity Data Journal
J. Deng, W. Dong, R. Socher, L. Li, K. Li, L. Fei‐fei (2009)
2009 IEEE Conference on Computer Vision and Pattern Recognition
T. Høye, Susanne Ellebjerg, M. Philipp (2007)
The Impact of Climate on Flowering in the High Arctic—The Case of Dryas in a Hybrid Zone, 39
E. Post, T.T. Høye (2013)
Advancing the long view of ecological change in tundra systems. introduction, 368
A. Beamish, W. Nijland, M. Edwards, N. Coops, G. Henry (2016)
Phenology and vegetation change measurements from true colour digital photography in high Arctic tundra, 2
Nicole Rafferty, J. Diez, C. Bertelsen (2019)
Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across ElevationsCurrent biology : CB
L. Estes, P. Elsen, T. Treuer, L. Ahmed, Kelly Caylor, Jason Chang, Jonathan Choi, Erle Ellis (2018)
The spatial and temporal domains of modern ecologyNature Ecology & Evolution, 2
Eric Post, B. Steinman, M. Mann (2018)
Acceleration of phenological advance and warming with latitude over the past centuryScientific Reports, 8
A. Iler, T. Høye, D. Inouye, N. Schmidt (2013)
Long-term trends mask variation in the direction and magnitude of short-term phenological shifts.American journal of botany, 100 7
Xu Wang, Julie Tang, M. Whitty (2021)
DeepPhenology: Estimation of apple flower phenology distributions based on deep learningComput. Electron. Agric., 185
M. Hällfors, L. Antão, M. Itter, A. Lehikoinen, Tanja Lindholm, Tomas Roslin, M. Saastamoinen (2020)
Shifts in timing and duration of breeding for 73 boreal bird species over four decadesProceedings of the National Academy of Sciences of the United States of America, 117
S. Oberbauer, S. Elmendorf, T. Troxler, R. Hollister, A. Rocha, M. Bret-Harte, M. Dawes, A. Fosaa, G. Henry, T. Høye, F. Jarrad, I. Jónsdóttir, I. Jónsdóttir, K. Klanderud, J. Klein, U. Molau, C. Rixen, N. Schmidt, G. Shaver, R. Slider, Ø. Totland, C. Wahren, J. Welker (2013)
Phenological response of tundra plants to background climate variation tested using the International Tundra ExperimentPhilosophical Transactions of the Royal Society B: Biological Sciences, 368
I. Myers-Smith, Jeffrey Kerby, G. Phoenix, J. Bjerke, H. Epstein, Jakob Assmann, C. John, L. Andreu‐Hayles, S. Angers‐Blondin, P. Beck, L. Berner, U. Bhatt, Anne Bjorkman, D. Blok, A. Bryn, C. Christiansen, J. Cornelissen, Andrew Cunliffe, S. Elmendorf, B. Forbes, S. Goetz, R. Hollister, Rogier Jong, M. Loranty, M. Macias‐Fauria, K. Maseyk, S. Normand, J. Olofsson, Thomas Parker, F. Parmentier, E. Post, G. Schaepman‐Strub, F. Stordal, P. Sullivan, H. Thomas, H. Tømmervik, Rachael Treharne, C. Tweedie, D. Walker, M. Wilmking, S. Wipf (2019)
Complexity revealed in the greening of the ArcticNature Climate Change, 10
A. Dutta, A. Zisserman (2019)
MM 2019 ? Proceedings of the 27th ACM International Conference on Multimedia
Tsung-Yi Lin, M. Maire, Serge Belongie, James Hays, P. Perona, Deva Ramanan, Piotr Dollár, C. Zitnick (2014)
Microsoft COCO: Common Objects in Context
Brian Spiesman, C. Gratton, Rich Hatfield, W. Hsu, Sarina Jepsen, B. McCornack, Krushi Patel, Guanghui Wang (2021)
Assessing the potential for deep learning and computer vision to identify bumble bee species from imagesScientific Reports, 11
Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick (2017)
Mask R-CNN
Paul CaraDonna, A. Iler, D. Inouye (2014)
Shifts in flowering phenology reshape a subalpine plant communityProceedings of the National Academy of Sciences, 111
A. Menzel, Ye Yuan, M. Matiu, T. Sparks, H. Scheifinger, R. Gehrig, N. Estrella (2020)
Climate change fingerprints in recent European plant phenologyGlobal Change Biology, 26
Fernando Palacios, G. Bueno, J. Salido, M. Diago, Inés Hernández, J. Tardáguila (2020)
Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditionsComput. Electron. Agric., 178
J. Prevéy, M. Vellend, N. Rüger, R. Hollister, Anne Bjorkman, I. Myers-Smith, S. Elmendorf, Karin Clark, E. Cooper, B. Elberling, A. Fosaa, G. Henry, T. Høye, I. Jónsdóttir, K. Klanderud, E. Lévesque, M. Mauritz, U. Molau, S. Natali, S. Oberbauer, Zoe Panchen, E. Post, S. Rumpf, N. Schmidt, E. Schuur, P. Semenchuk, T. Troxler, J. Welker, C. Rixen (2017)
Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudesGlobal Change Biology, 23
Ross Girshick, Jeff Donahue, Trevor Darrell, J. Malik (2013)
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation2014 IEEE Conference on Computer Vision and Pattern Recognition
B. Cook, E. Wolkovich, C. Parmesan (2012)
Divergent responses to spring and winter warming drive community level flowering trendsProceedings of the National Academy of Sciences, 109
T. Høye, J. Ärje, Kim Bjerge, O. Hansen, Alexandros Iosifidis, F. Leese, Hjalte Mann, Kristian Meissner, C. Melvad, Jenni Raitoharju (2020)
Deep learning and computer vision will transform entomologyProceedings of the National Academy of Sciences, 118
P. Lin, Yongming Chen (2018)
Detection of Strawberry Flowers in Outdoor Field by Deep Neural Network2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)
Katelin Pearson, Gil Nelson, Myla Aronson, P. Bonnet, Laura Brenskelle, Charles Davis, Ellen Denny, Elizabeth Ellwood, H. Goëau, J. Heberling, A. Joly, Titouan Lorieul, S. Mazer, Emily Meineke, Brian Stucky, Patrick Sweeney, Alexander White, P. Soltis (2020)
Machine Learning Using Digitized Herbarium Specimens to Advance Phenological ResearchBioscience, 70
J. Ärje, Dimitrios Milioris, D. Tran, J. Jepsen, Jenni Raitoharju, M. Gabbouj, Alexandros Iosifidis, T. Høye (2019)
Automatic Flower Detection and Classification System Using a Light-Weight Convolutional Neural Network
Yu Qian, Qin Liu, Hongming Zhu, Hongfei Fan, Bowen Du, Sicong Liu (2019)
Mask R-CNN for Object Detection in Multitemporal SAR Images2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)
Jia Deng, Wei Dong, R. Socher, Li-Jia Li, K. Li, Li Fei-Fei (2009)
ImageNet: A large-scale hierarchical image database2009 IEEE Conference on Computer Vision and Pattern Recognition
S. Thackeray, P. Henrys, D. Hemming, James Bell, M. Botham, S. Burthe, P. Helaouet, David Johns, Ian Jones, David Leech, Eleanor Mackay, D. Massimino, S. Atkinson, Philip Bacon, Tom Brereton, L. Carvalho, Tim Clutton-Brock, C. Duck, M. Edwards, J. Elliott, Stephen Hall, R. Harrington, J. Pearce‐Higgins, T. Høye, L. Kruuk, J. Pemberton, Tim Sparks, Paul Thompson, I. White, I. Winfield, S. Wanless (2016)
Phenological sensitivity to climate across taxa and trophic levelsNature, 535
A. Richardson, J. Jenkins, B. Braswell, D. Hollinger, S. Ollinger, Marie-Louise Smith (2007)
Use of digital webcam images to track spring green-up in a deciduous broadleaf forestOecologia, 152
(2021)
Summary for policy?makers
The advancement of spring is a widespread biological response to climate change observed across taxa and biomes. However, the species level responses to warming are complex and the underlying mechanisms are difficult to disentangle. This is partly due to a lack of data, which are typically collected by direct observations, and thus very time‐consuming to obtain. Data deficiency is especially pronounced in the Arctic where the warming is particularly severe. We present a method for automated monitoring of flowering phenology of specific plant species at very high temporal resolution through full growing seasons and across geographical regions. The method consists of image‐based monitoring of field plots using near‐surface time‐lapse cameras and subsequent automated detection and counting of flowers in the images using a convolutional neural network. We demonstrate the feasibility of collecting flower phenology data using automatic time‐lapse cameras and show that the temporal resolution of the results surpasses what can be collected by traditional observation methods. We focus on two Arctic species, the mountain avens Dryas octopetala and Dryas integrifolia in 20 image series from four sites. Our flower detection model proved capable of detecting flowers of the two species with a remarkable precision of 0.918 (adjusted to 0.966) and a recall of 0.907. Thus, the method can automatically quantify the seasonal dynamics of flower abundance at fine scale and return reliable estimates of traditional phenological variables such as the timing of onset, peak, and end of flowering. We describe the system and compare manual and automatic extraction of flowering phenology data from the images. Our method can be directly applied on sites containing mountain avens using our trained model, or the model could be fine‐tuned to other species. We discuss the potential of automatic image‐based monitoring of flower phenology and how the method can be improved and expanded for future studies.
Remote Sensing in Ecology and Conservation – Wiley
Published: Dec 1, 2022
Keywords: Arctic; computer vision; convolutional neural network; Dryas integrifolia; Dryas octopetala; ecological monitoring; life‐history variation; machine learning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.