Access the full text.
Sign up today, get DeepDyve free for 14 days.
Robert Edgar (2004)
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic acids research, 32 5
F. Love, G. Simmons, B. Parker, R. Wharton, K. Seaburg (1983)
Modern conophyton‐like microbial mats discovered in Lake Vanda, AntarcticaGeomicrobiology Journal, 3
D. Castendyk, M. Obryk, S. Leidman, M. Gooseff, I. Hawes (2016)
Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of AntarcticaGlobal and Planetary Change, 144
Sky Rashby, A. Sessions, R. Summons, D. Newman (2007)
Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototrophProceedings of the National Academy of Sciences, 104
R. A. Wharton, C. P. McKay, G. D. Clow, D. T. Andersen (1993)
Physical and geochemical processes in Antarctic Lakes. AGU Studies in Antarctic Meteorology
I. Hawes, D. Sumner, D. Andersen, A. Jungblut, T. Mackey (2013)
Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic LakeBiology, 2
H. Talbot, M. Rohmer, P. Farrimond (2007)
Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry.Rapid communications in mass spectrometry : RCM, 21 10
G. Kulkarni, Chia‐Hung Wu, D. Newman (2013)
The General Stress Response Factor EcfG Regulates Expression of the C-2 Hopanoid Methylase HpnP in Rhodopseudomonas palustris TIE-1Journal of Bacteriology, 195
P. Welander, Maureen Coleman, A. Sessions, R. Summons, D. Newman (2010)
Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanesProceedings of the National Academy of Sciences, 107
A. Quesada, E. Fernández-Valiente, I. Hawes, C. Howard-Williams (2008)
Benthic primary production in polar lakes and rivers
J. Brocks, G. Love, R. Summons, A. Knoll, G. Logan, S. Bowden (2005)
Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic seaNature, 437
C. Mullineaux, H. Kirchhoff (2009)
Role of Lipids in the Dynamics of Thylakoid Membranes
Sudhir Kumar, G. Stecher, K. Tamura (2016)
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.Molecular biology and evolution, 33 7
H. Talbot, R. Summons, L. Jahnke, P. Farrimond (2003)
Characteristic fragmentation of bacteriohopanepolyols during atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry.Rapid communications in mass spectrometry : RCM, 17 24
P. Welander, R. Hunter, Lichun Zhang, A. Sessions, R. Summons, D. Newman (2009)
Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1Journal of Bacteriology, 191
R. Wharton, C. Mckay, G. Clow, D. Andersen (2013)
Perennial Ice Covers and their Influence on Antarctic Lake Ecosystems
D. Doughty, R. Hunter, R. Summons, D. Newman (2009)
2‐Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implicationsGeobiology, 7
R. Desikan, K. Last, Rhian Harrett-Williams, C. Tagliavia, K. Harter, Richard Hooley, J. Hancock, S. Neill (2006)
Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis.The Plant journal : for cell and molecular biology, 47 6
I. Hawes, D. Sumner, D. Andersen, T. Mackey (2011)
Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice‐covered Antarctic lakeGeobiology, 9
D. M. McKnight, G. R. Aiken, E. D. Andrews, E. C. Bowles, R. A. Harnish (2013)
Physical and biogeochemical processes in Antarctic Lakes
K. Poralla, T. Härtner, E. Kannenberg (1984)
Effect of temperature and pH on the hopanoid content of Bacillus acidocaldariusFems Microbiology Letters, 23
W. Vincent (1981)
Production Strategies in Antarctic Inland Waters: Phytoplankton Eco‐Physiology in a Permanently Ice‐Covered LakeEcology, 62
D. McKnight, G. Aiken, E. Andrews, E. Bowles, R. Harnish (2013)
Dissolved Organic Material in Dry Valley Lakes: A Comparison of Lake Fryxell, Lake Hoare and Lake Vanda
G. Kulkarni, Nicolas Busset, A. Molinaro, D. Gargani, C. Chaintreuil, A. Silipo, E. Giraud, D. Newman (2015)
Specific Hopanoid Classes Differentially Affect Free-Living and Symbiotic States of Bradyrhizobium diazoefficiensmBio, 6
P. Welander, D. Doughty, C.-H. Wu, S. Méhay, R. Summons, D. Newman (2012)
Identification and characterization of Rhodopseudomonas palustris TIE‐1 hopanoid biosynthesis mutantsGeobiology, 10
D. Rush, Kate Osborne, D. Birgel, A. Kappler, H. Hirayama, J. Peckmann, S. Poulton, J. Nickel, K. Mangelsdorf, M. Kalyuzhnaya, F. Sidgwick, H. Talbot (2016)
The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine SystemsPLoS ONE, 11
C.-H. Wu, L. Kong, M. Bialecka-Fornal, S. Park, A. Thompson, G. Kulkarni, S. Conway, D. Newman (2015)
Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratoriesGeobiology, 13
R. A. Wharton (1994)
Phanerozoic stromatolites II
J. Priscu, E. Adams, H. Paerl, C. Fritsen, J. Dore, J. Lisle, C. Wolf, J. Mikucki, J. Castello, S. Rogers (2005)
Chapter 3. Perennial Antarctic Lake Ice: A Refuge for Cyanobacteria in an Extreme Environment
H. Talbot, R. Summons, L. Jahnke, C. Cockell, M. Rohmer, P. Farrimond (2008)
Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settingsOrganic Geochemistry, 39
R. Summons, L. Jahnke, J. Hope, G. Logan (1999)
2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesisNature, 400
H. Talbot, P. Farrimond (2007)
Bacterial populations recorded in diverse sedimentary biohopanoid distributionsOrganic Geochemistry, 38
J. Sáenz, E. Sezgin, P. Schwille, K. Simons (2012)
Functional convergence of hopanoids and sterols in membrane orderingProceedings of the National Academy of Sciences, 109
J. Sáenz, S. Wakeham, T. Eglinton, R. Summons (2011)
New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environmentsOrganic Geochemistry, 42
A. Bradley, A. Pearson, J. Sáenz, C. Marx (2010)
Adenosylhopane: The first intermediate in hopanoid side chain biosynthesisOrganic Geochemistry, 41
T. Mackey, D. Sumner, I. Hawes, A. Jungblut (2017)
Morphological signatures of microbial activity across sediment and light microenvironments of Lake Vanda, AntarcticaSedimentary Geology, 361
Jessica Ricci, A. Michel, Dianne Newman, Dianne Newman (2015)
Phylogenetic analysis of HpnP reveals the origin of 2‐methylhopanoid production in AlphaproteobacteriaGeobiology, 13
T. Hamilton, P. Welander, H. Albrecht, J. Fulton, I. Schaperdoth, L. Bird, R. Summons, K. Freeman, J. Macalady (2017)
Microbial communities and organic biomarkers in a Proterozoic‐analog sinkholeGeobiology, 15
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, V. Thiel (2012)
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic SeaBiogeosciences, 10
Tamsyn Garby, E. Matys, Sarah Ongley, A. Salih, A. Larkum, M. Walter, R. Summons, B. Neilan (2017)
Lack of Methylated Hopanoids Renders the Cyanobacterium Nostoc punctiforme Sensitive to Osmotic and pH StressApplied and Environmental Microbiology, 83
I. Hawes, A. Schwarz (2001)
ABSORPTION AND UTILIZATION OF IRRADIANCE BY CYANOBACTERIAL MATS IN TWO ICE‐COVERED ANTARCTIC LAKES WITH CONTRASTING LIGHT CLIMATESJournal of Phycology, 37
E. Bligh, Dyer W.J.A. (1959)
A rapid method of total lipid extraction and purification.Canadian journal of biochemistry and physiology, 37 8
I. Hawes, D. Moorhead, D. Sutherland, J. Schmeling, A. Schwarz (2001)
Benthic primary production in two perennially ice-covered Antarctic lakes: patterns of biomass accumulation with a model of community metabolismAntarctic Science, 13
E. Matys, J. Sepúlveda, S. Pantoja, C. Lange, M. Caniupán, F. Lamy, R. Summons (2017)
Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern ChileGeobiology, 15
K. Poralla, G. Muth, T. Härtner (2000)
Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2).FEMS microbiology letters, 189 1
D. Rush, J. Damsté, S. Poulton, B. Thamdrup, A. Garside, Jenaro González, Stefan Schouten, M. Jetten, H. Talbot (2014)
Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sedimentsGeochimica et Cosmochimica Acta, 140
J. Sáenz, Daniel Grosser, A. Bradley, Thibaut Lagny, O. Lavrynenko, Martyna Broda, K. Simons (2015)
Hopanoids as functional analogues of cholesterol in bacterial membranesProceedings of the National Academy of Sciences, 112
A. Quesada, E. Fernández‐Valiente, I. Hawes, C. Howard‐Williams (2008)
Polar lakes and rivers
H. Paerl, J. Priscu (1998)
Microbial Phototrophic, Heterotrophic, and Diazotrophic Activities Associated with Aggregates in the Permanent Ice Cover of Lake Bonney, AntarcticaMicrobial Ecology, 36
David Jones, W. Taylor, J. Thornton (1992)
The rapid generation of mutation data matrices from protein sequencesComputer applications in the biosciences : CABIOS, 8 3
D. Sutherland, I. Hawes (2009)
Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake.FEMS microbiology ecology, 67 2
L. Zhang, A. Jungblut, I. Hawes, D. Andersen, D. Sumner, T. Mackey (2015)
Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, AntarcticaPolar Biology, 38
C. Howard-Williams, A. Schwarz, I. Hawes, J. Priscu (2013)
Optical Properties of the Mcmurdo Dry Valley Lakes, Antarctica
B. Seckler, K. Poralla (1986)
Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldariusBiochimica et Biophysica Acta, 881
M. Blumenberg, M. Krüger, K. Nauhaus, H. Talbot, Birte Oppermann, R. Seifert, T. Pape, W. Michaelis (2006)
Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio).Environmental microbiology, 8 7
D. Y. Sumner, I. Hawes, D. T. Andersen, A.‐D. Jungblut, T. Mackey, K. Wall (2016)
Growth model for microbial pinnacles in Lake Vanda, Antarctica, 14
Guy Ourisson, M. Rohmer, K. Poralla (1987)
Prokaryotic hopanoids and other polyterpenoid sterol surrogates.Annual review of microbiology, 41
D. Sumner, A. Jungblut, I. Hawes, D. Andersen, T. Mackey, K. Wall (2016)
Growth of elaborate microbial pinnacles in Lake Vanda, AntarcticaGeobiology, 14
R. Wharton (1994)
Stromatolitic Mats in Antarctic Lakes
J. C. Priscu, C. H. Fritsen, E. E. Adams, H. W. Paerl, J. T. Lisle, J. E. Dore, J. A. Mikucki (2005)
Life in ancient ice
L. Stingaciu, H. O’Neill, M. Liberton, V. Urban, H. Pakrasi, M. Ohl (2016)
Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial CellsScientific Reports, 6
J. Priscu, C. Fritsen, E. Adams, S. Giovannoni, H. Paerl, C. Mckay, P. Doran, D. Gordon, B. Lanoil, J. Pinckney (1998)
Perennial Antarctic lake ice: an oasis for life in a polar desert.Science, 280 5372
J. Ricci, R. Morton, G. Kulkarni, M. Summers, D. Newman (2017)
Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiformeGeobiology, 15
S. Wakeham, C. Turich, F. Schubotz, A. Podlaska, Xiaona Li, R. Varela, Y. Astor, J. Sáenz, D. Rush, J. Damsté, R. Summons, M. Scranton, G. Taylor, K. Hinrichs (2012)
Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin, 63
W. Vincent, C. Vincent (1982)
Factors Controlling Phytoplankton Production in Lake Vanda (77°S)Canadian Journal of Fisheries and Aquatic Sciences, 39
Masakazu Iwai, Makio Yokono, A. Nakano (2014)
Visualizing structural dynamics of thylakoid membranesScientific Reports, 4
M. Rohmer, P. Bouvier, G. Ourisson (1979)
Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols.Proceedings of the National Academy of Sciences of the United States of America, 76 2
Bacteriohopanepolyols (BHPs) are bacterial membrane lipids that may be used as biological or environmental biomarkers. Previous studies have described the diversity, distribution, and abundance of BHPs in a variety of modern environments. However, the regulation of BHP production in polar settings is not well understood. Benthic microbial mats from ice‐covered lakes of the McMurdo Dry Valleys, Antarctica provide an opportunity to investigate the sources, physiological roles, and preservation of BHPs in high‐latitude environments. Lake Vanda is one of the most stable lakes on Earth, with microbial communities occupying specific niches along environmental gradients. We describe the influence of mat morphology and local environmental conditions on the diversity and distribution of BHPs and their biological sources in benthic microbial mats from Lake Vanda. The abundance and diversity of C‐2 methylated hopanoids (2‐MeBHP) are of particular interest, given that their stable degradation products, 2‐methylhopanes, are among the oldest and most prevalent taxonomically informative biomarkers preserved in sedimentary rocks. Furthermore, the interpretation of sedimentary 2‐methylhopanes is of great interest to the geobiology community. We identify cyanobacteria as the sole source of 2‐MeBHP in benthic microbial mats from Lake Vanda and assess the hypothesis that 2‐MeBHP are regulated in response to a particular environmental variable, namely solar irradiance.
Geobiology – Wiley
Published: May 1, 2019
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.