Access the full text.
Sign up today, get DeepDyve free for 14 days.
Jenan Kharbush, J. Ugalde, S. Hogle, E. Allen, L. Aluwihare (2013)
Composite Bacterial Hopanoids and Their Microbial Producers across Oxygen Gradients in the Water Column of the California CurrentApplied and Environmental Microbiology, 79
L. Lisiecki, M. Raymo (2005)
A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O recordsPaleoceanography, 20
S. Pantoja, J. Sepúlveda, H. González (2004)
Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile, 51
J. Ricci, Maureen Coleman, P. Welander, A. Sessions, R. Summons, J. Spear, D. Newman (2013)
Diverse capacity for 2-methylhopanoid production correlates with a specific ecological nicheThe ISME Journal, 8
J. Hedges, J. Baldock, Y. Gélinas, Cindy Lee, Michael Peterson, S. Wakeham (2001)
Evidence for non-selective preservation of organic matter in sinking marine particlesNature, 409
F. Stewart, O. Ulloa, E. Delong (2012)
Microbial metatranscriptomics in a permanent marine oxygen minimum zone.Environmental microbiology, 14 1
D. Karl, G. Knauer, John Martin (1988)
Downward flux of particulate organic matter in the ocean: a particle decomposition paradoxNature, 332
P. Lam, M. Kuypers (2011)
Microbial nitrogen cycling processes in oxygen minimum zones.Annual review of marine science, 3
D. Canfield, F. Stewart, B. Thamdrup, L. Brabandere, T. Dalsgaard, E. Delong, N. Revsbech, O. Ulloa (2010)
A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean CoastScience, 330
Sky Rashby, A. Sessions, R. Summons, D. Newman (2007)
Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototrophProceedings of the National Academy of Sciences, 104
J. Sáenz (2010)
Exploring the distribution and physiological roles of bacterial membrane lipids in the marine environment
W. Smethie (1987)
Nutrient regeneration and denitrification in low oxygen fjords, 34
Heike Stevens, O. Ulloa (2008)
Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific.Environmental microbiology, 10 5
A. Jaeschke, M. Lewan, E. Hopmans, Stefan Schouten, J. Damsté (2008)
Thermal stability of ladderane lipids as determined by hydrous pyrolysisOrganic Geochemistry, 39
R. Fuenzalida, W. Schneider, J. Garcés-Vargas, L. Bravo, C. Lange (2009)
Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific OceanDeep-sea Research Part Ii-topical Studies in Oceanography, 56
Report and preliminary results of R/V Sonne cruise SO211
J. Rattray, J. Vossenberg, E. Hopmans, B. Kartal, L. Niftrik, W. Rijpstra, M. Strous, M. Jetten, Stefan Schouten, J. Damsté (2008)
Ladderane lipid distribution in four genera of anammox bacteriaArchives of Microbiology, 190
P. Welander, Maureen Coleman, A. Sessions, R. Summons, D. Newman (2010)
Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanesProceedings of the National Academy of Sciences, 107
J. Damsté, M. Strous, W. Rijpstra, E. Hopmans, J. Geenevasen, A. Duin, L. Niftrik, M. Jetten, M. Jetten (2002)
Linearly concatenated cyclobutane lipids form a dense bacterial membraneNature, 419
M. Blumenberg, R. Seifert, W. Michaelis (2007)
Aerobic methanotrophy in the oxic-anoxic transition zone of the black sea water columnOrganic Geochemistry, 38
R. Armstrong, Cindy Lee, J. Hedges, S. Honjo, S. Wakeham (2001)
A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast mineralsDeep-sea Research Part Ii-topical Studies in Oceanography, 49
R. Ganeshram, T. Pedersen, S. Calvert, J. Murray (1995)
Large changes in oceanic nutrient inventories from glacial to interglacial periodsNature, 376
G. Ourisson, P. Albrecht, M. Rohmer (1979)
The Hopanoids: palaeochemistry and biochemistry of a group of natural productsPure and Applied Chemistry, 51
H. Talbot, Angela Squier, B. Keely, P. Farrimond (2003)
Atmospheric pressure chemical ionisation reversed-phase liquid chromatography/ion trap mass spectrometry of intact bacteriohopanepolyols.Rapid communications in mass spectrometry : RCM, 17 7
F. Chavez, M. Messié (2009)
A comparison of Eastern Boundary Upwelling EcosystemsProgress in Oceanography, 83
W. Fischer, R. Summons, A. Pearson (2005)
Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbeGeobiology, 3
M. Kuypers, A. Sliekers, G. Lavik, M. Schmid, B. Jørgensen, J. Kuenen, J. Damsté, M. Strous, M. Jetten (2003)
Anaerobic ammonium oxidation by anammox bacteria in the Black SeaNature, 422
R. Keeling, A. Körtzinger, N. Gruber (2010)
Ocean deoxygenation in a warming world.Annual review of marine science, 2
(2003)
Bacteriohopanepolyols in Mediterranean sapropel events: indications for tracing ancient anammox [abstract
S. Jaccard, E. Galbraith (2012)
Large climate-driven changes of oceanic oxygen concentrations during the last deglaciationNature Geoscience, 5
Alexander Galán, V. Molina, B. Thamdrup, D. Woebken, G. Lavik, M. Kuypers, O. Ulloa (2009)
Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern ChileDeep-sea Research Part Ii-topical Studies in Oceanography, 56
M. Cooke, H. Talbot, P. Farrimond (2008)
Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern EnglandOrganic Geochemistry, 39
H. Talbot, M. Rohmer, P. Farrimond (2007)
Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry.Rapid communications in mass spectrometry : RCM, 21 6
P. Welander, R. Hunter, Lichun Zhang, A. Sessions, R. Summons, D. Newman (2009)
Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1Journal of Bacteriology, 191
E. Galbraith, M. Kienast (2013)
The acceleration of oceanic denitrification during deglacial warmingNature Geoscience, 6
Jenan Kharbush, Kanchi Kejriwal, L. Aluwihare (2016)
Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific OceanMicrobial Ecology, 71
G. Martínez﹣Méndez, D. Hebbeln, M. Mohtadi, F. Lamy, R. Pol-Holz, D. Reyes‐Macaya, T. Freudenthal (2013)
Changes in the advection of Antarctic Intermediate Water to the northern Chilean coast during the last 970 kyrPaleoceanography, 28
D. Doughty, R. Hunter, R. Summons, D. Newman (2009)
2‐Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implicationsGeobiology, 7
S. Bograd, C. Castro, E. Lorenzo, D. Palacios, H. Bailey, W. Gilly, F. Chavez (2008)
Oxygen declines and the shoaling of the hypoxic boundary in the California CurrentGeophysical Research Letters, 35
Dianne Newman, C. Neubauer, Jessica Ricci, Chia‐Hung Wu, A. Pearson (2016)
Cellular and Molecular Biological Approaches to Interpreting Ancient BiomarkersAnnual Review of Earth and Planetary Sciences, 44
C. Berndmeyer, V. Thiel, O. Schmale, N. Wasmund, M. Blumenberg (2014)
Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)Biogeosciences, 11
D. Capone, D. Hutchins (2013)
Microbial biogeochemistry of coastal upwelling regimes in a changing oceanNature Geoscience, 6
A. Bednarczyk, Teresita Hernandez, P. Schaeffer, P. Adam, H. Talbot, P. Farrimond, A. Riboulleau, C. Largeau, S. Derenne, M. Rohmer, P. Albrecht (2005)
32,35-Anhydrobacteriohopanetetrol: An unusual bacteriohopanepolyol widespread in recent and past environmentsOrganic Geochemistry, 36
L. Farías, A. Paulmier, M. Gallegos (2007)
Nitrous oxide and N-nutrient cycling in the oxygen minimum zone off northern Chile, 54
M. Rohmer, P. Bouvier-Navé, G. Ourisson (1984)
Distribution of Hopanoid Triterpenes in ProkaryotesMicrobiology, 130
A. Paulmier, D. Ruiz-Pino (2009)
Oxygen minimum zones (OMZs) in the modern oceanProgress in Oceanography, 80
M. Strous, E. Gerven, J. Kuenen, M. Jetten (1997)
Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludgeApplied and Environmental Microbiology, 63
G. Daneri, V. Dellarossa, R. Quiñones, Bárbara Jacob, P. Montero, O. Ulloa (2000)
Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areasMarine Ecology Progress Series, 197
V. Montecino, C. Lange (2009)
The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studiesProgress in Oceanography, 83
A. Jaeschke, M. Ziegler, E. Hopmans, G. Reichart, L. Lourens, Stefan Schouten, J. Damsté (2009)
Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cyclePaleoceanography, 24
Sangita Ganesh, D. Parris, E. Delong, F. Stewart (2013)
Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zoneThe ISME Journal, 8
P. Welander, D. Doughty, D. Doughty, Chia-Hung Wu, S. Méhay, R. Summons, Dianne Newman, Dianne Newman (2012)
Identification and characterization of Rhodopseudomonas palustris TIE‐1 hopanoid biosynthesis mutantsGeobiology, 10
J. Bettencourt, C. L'opez, Emilio Garc'ia, I. Montes, J. Sudre, B. Dewitte, A. Paulmier, V'eronique Garccon (2015)
Boundaries of the Peruvian oxygen minimum zone shaped by coherent mesoscale dynamicsNature Geoscience, 8
H. Talbot, R. Summons, L. Jahnke, C. Cockell, M. Rohmer, P. Farrimond (2008)
Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settingsOrganic Geochemistry, 39
R. Summons, L. Jahnke, J. Hope, G. Logan (1999)
2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesisNature, 400
H. Talbot, P. Farrimond (2007)
Bacterial populations recorded in diverse sedimentary biohopanoid distributionsOrganic Geochemistry, 38
J. Sáenz, E. Sezgin, P. Schwille, K. Simons (2012)
Functional convergence of hopanoids and sterols in membrane orderingProceedings of the National Academy of Sciences, 109
J. Sáenz, S. Wakeham, T. Eglinton, R. Summons (2011)
New constraints on the provenance of hopanoids in the marine geologic record: Bacteriohopanepolyols in marine suboxic and anoxic environmentsOrganic Geochemistry, 42
R. Summons, S. Brassell, G. Eglinton, E. Evans, R. Horodyski, N. Robinson, D. Ward (1988)
Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, ArizonaGeochimica et Cosmochimica Acta, 52
Angelika Rieck, D. Herlemann, K. Jürgens, H. Grossart (2015)
Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic SeaFrontiers in Microbiology, 6
M. Eickhoff, D. Birgel, H. Talbot, J. Peckmann, A. Kappler (2013)
Oxidation of Fe(II) leads to increased C‐2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE‐1Geobiology, 11
R. Summons, Sara Lincoln (2012)
Biomarkers: Informative Molecules for Studies in Geobiology
S. Wakeham, R. Amann, K. Freeman, E. Hopmans, B. Jørgensen, Isabell Putnam, Stefan Schouten, J. Damsté, H. Talbot, D. Woebken (2007)
Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker studyOrganic Geochemistry, 38
R. E. Summons, S. A. Lincoln (2012)
Fundamentals of geobiology
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, V. Thiel (2012)
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic SeaBiogeosciences, 10
A. Sessions, Lichun Zhang, P. Welander, D. Doughty, R. Summons, D. Newman (2012)
Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography-mass spectrometry.Organic geochemistry, 56
M. Altabet, R. Francois, D. Murray, W. Prell (1995)
Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratiosNature, 373
O. Ulloa, D. Canfield, E. Delong, Ricardo Letelier, F. Stewart (2012)
Microbial oceanography of anoxic oxygen minimum zonesProceedings of the National Academy of Sciences, 109
P. Lam, G. Lavik, M. Jensen, J. Vossenberg, M. Schmid, D. Woebken, D. Gutiérrez, R. Amann, M. Jetten, M. Kuypers (2009)
Revising the nitrogen cycle in the Peruvian oxygen minimum zoneProceedings of the National Academy of Sciences, 106
E. Bligh, Dyer W.J.A. (1959)
A rapid method of total lipid extraction and purification.Canadian journal of biochemistry and physiology, 37 8
J. J. Brocks, R. E. Summons (2003)
Biomarkers of early life, 8
A. Pearson, Sarah Page, T. Jorgenson, W. Fischer, M. Higgins (2007)
Novel hopanoid cyclases from the environment.Environmental microbiology, 9 9
T. Härtner, K. Straub, E. Kannenberg (2005)
Occurrence of hopanoid lipids in anaerobic Geobacter species.FEMS microbiology letters, 243 1
D. Rush, J. Damsté, S. Poulton, B. Thamdrup, A. Garside, Jenaro González, Stefan Schouten, M. Jetten, H. Talbot (2014)
Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sedimentsGeochimica et Cosmochimica Acta, 140
J. Sáenz, Daniel Grosser, A. Bradley, Thibaut Lagny, O. Lavrynenko, Martyna Broda, K. Simons (2015)
Hopanoids as functional analogues of cholesterol in bacterial membranesProceedings of the National Academy of Sciences, 112
Sangita Ganesh, L. Bristow, M. Larsen, Neha Sarode, B. Thamdrup, F. Stewart (2015)
Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zoneThe ISME Journal, 9
P. Schaeffer, G. Schmitt, P. Adam, M. Rohmer (2010)
Abiotic formation of 32,35-anhydrobacteriohopanetetrol: a geomimetic approach.Organic Geochemistry, 41
F. Harvey
The Grand Canyon of Arizona
Helen Sturt, R. Summons, Kristin Smith, M. Elvert, K. Hinrichs (2004)
Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry--new biomarkers for biogeochemistry and microbial ecology.Rapid communications in mass spectrometry : RCM, 18 6
A. Pearson, W. Leavitt, J. Sáenz, R. Summons, Mandy Tam, H. Close (2009)
Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient.Environmental microbiology, 11 5
M. Blumenberg, M. Krüger, K. Nauhaus, H. Talbot, Birte Oppermann, R. Seifert, T. Pape, W. Michaelis (2006)
Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio).Environmental microbiology, 8 7
Susanne Neuer, G. Meinecke, Andrés Cianca, A. Deeken, J. Godoy, C. Klaas, U. Koy, L. Laglera, Helge Meggers, A. Putzka, V. Ratmeyer, U. Rosiak (1998)
aus dem Fachbereich Geowissenschaften der Universität Bremen
A. Alldredge, M. Silver (1988)
Characteristics, dynamics and significance of marine snowProgress in Oceanography, 20
(2013)
Research at MIT was supported by the NASA Astrobiology Institute. J. Sepúlveda and R. Summons also thank the MIT-Chile MISTI Global Seed Funds grant program for funding
L. Stramma, G. Johnson, J. Sprintall, V. Mohrholz (2008)
Expanding Oxygen-Minimum Zones in the Tropical OceansScience, 320
(2012)
bacteriohopanepolyol distributions in soils from Northern England. Organic Geochemistry
M. Nishihara, Y. Koga (1987)
Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent.Journal of biochemistry, 101 4
J. Damsté, W. Rijpstra, Stefan Schouten, J. Fuerst, M. Jetten, M. Strous (2004)
The occurrence of hopanoids in planctomycetes : Implications for the sedimentary biomarker recordOrganic Geochemistry, 35
D. Rush, A. Jaeschke, J. Geenevasen, E. Tegelaar, J. Pureveen, M. Lewan, Stefan Schouten, J. Damsté (2014)
Generation of unusual branched long chain alkanes from hydrous pyrolysis of anammox bacterial biomassOrganic Geochemistry, 76
A. Paulmier, D. Ruiz-Pino, V. Garçon, L. Farías (2006)
Maintaining of the Eastern South Pacific Oxygen Minimum Zone (OMZ) off ChileGeophysical Research Letters, 33
P. Farrimond, P. Fox, H. Innes, I. Miskin, I. Head (1998)
Bacterial sources of hopanoids in recent sediments: improving our understanding of ancient hopane biomarkersAncient Biomolecules
B. Thamdrup (2012)
New Pathways and Processes in the Global Nitrogen CycleAnnual Review of Ecology, Evolution, and Systematics, 43
S. Wakeham, C. Turich, F. Schubotz, A. Podlaska, Xiaona Li, R. Varela, Y. Astor, J. Sáenz, D. Rush, J. Damsté, R. Summons, M. Scranton, G. Taylor, K. Hinrichs (2012)
Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin, 63
P. Schaeffer, G. Schmitt, P. Adam, M. Rohmer (2008)
Acid-catalyzed formation of 32,35-anhydrobacteriohopanetetrol from bacteriohopanetetrolOrganic Geochemistry, 39
Jody Wright, K. Konwar, S. Hallam (2012)
Microbial ecology of expanding oxygen minimum zonesNature Reviews Microbiology, 10
T. Dalsgaard, B. Thamdrup, L. Farías, N. Revsbech (2012)
Anammox and denitrification in the oxygen minimum zone of the eastern South PacificLimnology and Oceanography, 57
Marine oxygen minimum zones (OMZs) are characterized by the presence of subsurface suboxic or anoxic waters where diverse microbial processes are responsible for the removal of fixed nitrogen. OMZs have expanded over past decades and are expected to continue expanding in response to the changing climate. The implications for marine biogeochemistry, particularly nitrogen cycling, are uncertain. Cell membrane lipids (biomarkers), such as bacterial bacteriohopanepolyols (BHPs) and their degradation products (hopanoids), have distinctive structural attributes that convey information about their biological sources. Since the discovery of fossil hopanoids in ancient sediments, the study of BHPs has been of great biogeochemical interest due to their potential to serve as proxies for bacteria in the geological record. A stereoisomer of bacteriohopanetetrol (BHT), BHT II, has been previously identified in OMZ waters and has as been unequivocally identified in culture enrichments of anammox bacteria, a key group contributing to nitrogen loss in marine OMZs. We tested BHT II as a proxy for suboxia/anoxia and anammox bacteria in suspended organic matter across OMZ waters of the Humboldt Current System off northern Chile, as well as in surface and deeply buried sediments (125–150 ky). The BHT II ratio (BHT II/total BHT) increases as oxygen content decreases through the water column, consistent with previous results from Perú, the Cariaco Basin and the Arabian Sea, and in line with microbiological evidence indicating intense anammox activity in the Chilean OMZ. Notably, BHT II is transported from the water column to surface sediments, and preserved in deeply buried sediments, where the BHT II ratio correlates with changes in δ15N sediment values during glacial–interglacial transitions. This study suggests that BHT II offers a proxy for past changes in the relative importance of anammox, and fluctuations in nitrogen cycling in response to ocean redox changes through the geological record.
Geobiology – Wiley
Published: Nov 1, 2017
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.