Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer

Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer Oriented liquid crystal networks (LCNs) can undergo reversible shape change at the macroscopic scale upon an order–disorder phase transition of the mesogens. This property is explored for developing soft robots that can move under external stimuli, such as light in most studies. Herein, electrically driven soft robots capable of executing various types of biomimetic locomotion are reported. The soft robots are composed of a uniaxially oriented LCN strip, a laminated Kapton layer, and thin resistive wires embedded in between. Taking advantage of the combined attributes of the actuator, namely, easy processing, reprogrammability, and reversible shape shift between two 3D shapes at electric power on and off state, the concept of a “Janus” soft robot is demonstrated, which is built from a single piece of the material and has two parts undergoing opposite deformations simultaneously under a uniform stimulation. In addition to complex shape morphing such as the movement of oarfish and sophisticated devices like self‐locking grippers, electrically powered “Janus” soft robots can accomplish versatile locomotion modes, including crawling on flat surfaces through body arching up and straightening down, crawling inside tubes through body stretching and contraction, walking like four‐leg animals, and human‐like two‐leg walking while pushing a load forward. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Wiley

Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer

Loading next page...
 
/lp/wiley/biomimetic-locomotion-of-electrically-powered-janus-soft-robots-using-1Y7M1Y5aLZ

References (45)

Publisher
Wiley
Copyright
© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0935-9648
eISSN
1521-4095
DOI
10.1002/adma.201903452
Publisher site
See Article on Publisher Site

Abstract

Oriented liquid crystal networks (LCNs) can undergo reversible shape change at the macroscopic scale upon an order–disorder phase transition of the mesogens. This property is explored for developing soft robots that can move under external stimuli, such as light in most studies. Herein, electrically driven soft robots capable of executing various types of biomimetic locomotion are reported. The soft robots are composed of a uniaxially oriented LCN strip, a laminated Kapton layer, and thin resistive wires embedded in between. Taking advantage of the combined attributes of the actuator, namely, easy processing, reprogrammability, and reversible shape shift between two 3D shapes at electric power on and off state, the concept of a “Janus” soft robot is demonstrated, which is built from a single piece of the material and has two parts undergoing opposite deformations simultaneously under a uniform stimulation. In addition to complex shape morphing such as the movement of oarfish and sophisticated devices like self‐locking grippers, electrically powered “Janus” soft robots can accomplish versatile locomotion modes, including crawling on flat surfaces through body arching up and straightening down, crawling inside tubes through body stretching and contraction, walking like four‐leg animals, and human‐like two‐leg walking while pushing a load forward.

Journal

Advanced MaterialsWiley

Published: Sep 1, 2019

Keywords: ; ; ; ; ;

There are no references for this article.