Access the full text.
Sign up today, get DeepDyve free for 14 days.
O. Sonnentag, K. Hufkens, Cory Teshera-Sterne, A. Young, M. Friedl, B. Braswell, T. Milliman, J. O'keefe, A. Richardson (2012)
Digital repeat photography for phenological research in forest ecosystemsAgricultural and Forest Meteorology, 152
N. Pettorelli, J. Vik, A. Mysterud, J. Gaillard, C. Tucker, N. Stenseth (2005)
Using the satellite-derived NDVI to assess ecological responses to environmental change.Trends in ecology & evolution, 20 9
(2013)
Biomass. In: Measurements for terrestrial vegetation
J. Scurlock, K. Johnson, R. Olson (2002)
Estimating net primary productivity from grassland biomass dynamics measurementsGlobal Change Biology, 8
(2009)
Dealing with quasi - models in R . Compare
L. Khomo, A.S. Hartshorn, K.H. Rogers, O.A. Chadwick (2011)
Impact of rainfall and topography on the distribution of clays and major cations in granitic catenas of southern Africa, 87
M. Claverie, J. Ju, J. Masek, J. Dungan, E. Vermote, J. Roger, S. Skakun, C. Justice (2018)
The Harmonized Landsat and Sentinel-2 surface reflectance data setRemote Sensing of Environment
(2022)
The Authors. Remote Sensing in Ecology and Conservation
J. Cebrian (1999)
Patterns in the Fate of Production in Plant CommunitiesThe American Naturalist, 154
R. Pellew (1983)
The impacts of elephant, giraffe and fire upon the Acacia tortilis woodlands of the SerengetiAfrican Journal of Ecology, 21
P. Brun, N. Zimmermann, C. Graham, S. Lavergne, L. Pellissier, T. Münkemüller, W. Thuiller (2019)
The productivity-biodiversity relationship varies across diversity dimensionsNature Communications, 10
Ellen Aikens, M. Kauffman, J. Merkle, Samantha Dwinnell, Gary Fralick, K. Monteith (2017)
The greenscape shapes surfing of resource waves in a large migratory herbivore.Ecology letters, 20 6
Xiangtao Xu, D. Medvigy, I. Rodríguez‐Iturbe (2015)
Relation between rainfall intensity and savanna tree abundance explained by water use strategiesProceedings of the National Academy of Sciences, 112
D. Frank, S. McNaughton (1993)
Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National ParkOecologia, 96
A. Vrieling, M. Meroni, R. Darvishzadeh, A. Skidmore, Tiejun Wang, R. Zurita-Milla, K. Oosterbeek, B. O'Connor, M. Paganini (2018)
Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier islandRemote Sensing of Environment
N. Pettorelli, S. Ryan, T. Mueller, N. Bunnefeld, B. Jędrzejewska, M. Lima, Kyrre Kausrud (2011)
The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecologyClimate Research, 46
K. Burnham, David Anderson (2004)
Multimodel InferenceSociological Methods & Research, 33
S. McNaughton, D. Milchunas, D. Frank (1996)
How can net Primary Productivity be Measured in Grazing EcosystemsEcology, 77
T. Jager (1981)
Soils of the Serengeti Woodlands Tanzania
O.E. Sala, A.T. Austin (2000)
Methods in ecosystem science
M. Coughenour, S. McNaughton, L. Wallace (1984)
Modelling primary production of perennial graminoids 3$̄uniting physiological processes and morphometric traitsEcological Modelling, 23
Alison Post, A. Knapp (2019)
Plant growth and aboveground production respond differently to late-season deluges in a semi-arid grasslandOecologia, 191
C. Tucker (1979)
Red and photographic infrared linear combinations for monitoring vegetationRemote Sensing of Environment, 8
C. Bonenfant, J. Gaillard, T. Coulson, M. Festa‐Bianchet, A. Loison, M. Garel, L. Loe, Pierrick Blanchard, N. Pettorelli, N. Owen‐Smith (2009)
Empirical Evidence of Density- Dependence in Populations of Large HerbivoresAdvances in Ecological Research, 41
R. Myneni, F. Hall, P. Sellers, A. Marshak (1995)
The interpretation of spectral vegetation indexesIEEE Transactions on Geoscience and Remote Sensing, 33
E. Cleland, I. Chuine, A. Menzel, H. Mooney, M. Schwartz (2007)
Shifting plant phenology in response to global change.Trends in ecology & evolution, 22 7
M. Heras, P. Saco, G. Willgoose, D. Tongway (2012)
Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall‐use efficiency of vegetationJournal of Geophysical Research, 117
M. Schwartz (2003)
Phenology: An Integrative Environmental Science
Aikens E.O. (2020)
3444Current Biology, 30
Yan Cheng, A. Vrieling, F. Fava, M. Meroni, M. Marshall, S. Gachoki (2020)
Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2Remote Sensing of Environment
M. Toomey, M. Friedl, S. Frolking, K. Hufkens, S. Klosterman, O. Sonnentag, D. Baldocchi, C. Bernacchi, S. Biraud, G. Bohrer, E. Brzostek, S. Burns, C. Coursolle, D. Hollinger, H. Margolis, H. McCaughey, R. Monson, J. Munger, S. Pallardy, Richard Phillips, M. Torn, S. Wharton, Marcelo Zeri, A. and, A. Richardson (2015)
Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis.Ecological applications : a publication of the Ecological Society of America, 25 1
T. Hobbs (1995)
The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central AustraliaInternational Journal of Remote Sensing, 16
A.R.E. Sinclair, J.G.C. Hopcraft, H. Olff, S.A. Mduma, K.A. Galvin, G.J. Sharam (2008)
Serengeti III: human impacts on ecosystem dynamics
S. McNaughton (1985)
Ecology of a Grazing Ecosystem: The SerengetiEcological Monographs, 55
Michael Crawley (2022)
The R book
T. Huxman, K. Snyder, D. Tissue, A. Leffler, K. Ogle, W. Pockman, D. Sandquist, Daniel Potts, S. Schwinning (2004)
Precipitation pulses and carbon fluxes in semiarid and arid ecosystemsOecologia, 141
A. Richardson (2018)
Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery.The New phytologist, 222 4
L. Gu, W. Post, D. Baldocchi, T. Black, Shashi Verma, T. Vesala, S. Wofsy (2003)
Phenology of Vegetation Photosynthesis
R. Borden, I. Baillie, S. Hallett (2020)
The East African contribution to the formalisation of the soil catena conceptCatena, 185
Ellen Aikens, A. Mysterud, J. Merkle, F. Cagnacci, I. Rivrud, M. Hebblewhite, Mark Hurley, W. Peters, S. Bergen, J. Groeve, Samantha Dwinnell, B. Gehr, M. Heurich, A. Hewison, Anders Jarnemo, P. Kjellander, Max Kröschel, A. Licoppe, J. Linnell, E. Merrill, A. Middleton, N. Morellet, L. Neufeld, A. Ortega, K. Parker, L. Pedrotti, K. Proffitt, S. Saïd, H. Sawyer, B. Scurlock, J. Signer, Patrick Stent, P. Šustr, Tara. Szkorupa, K. Monteith, M. Kauffman (2020)
Wave-like Patterns of Plant Phenology Determine Ungulate Movement TacticsCurrent Biology, 30
D. Veresoglou, A. Fitter (1984)
Spatial and temporal patterns of growth and nutrient uptake of five co-existing grassesJournal of Ecology, 72
Paulo Rocha (2021)
Empirical evidenceCollaboration and Innovation in Criminal Justice
(2020)
2020) Wave-like patterns
L. Khomo, A. Hartshorn, K. Rogers, O. Chadwick (2011)
Impact of rainfall and topography on the distribution of clays and major cations in granitic catenasFuel and Energy Abstracts
Stuart Smith, B. Graae, J. Bukombe, Shombe Hassan, R. Lyamuya, Philipo Mtweve, A. Treydte, J. Speed (2020)
Savannah trees buffer herbaceous plant biomass against wild and domestic herbivoresApplied Vegetation Science, 23
C.D. Bonham (2013)
Measurements for terrestrial vegetation
G. Hempson, S. Archibald, W. Bond, R. Ellis, C. Grant, F. Kruger, L. Kruger, Courtney Moxley, N. Owen‐Smith, M. Peel, I. Smit, Karen Vickers (2015)
Ecology of grazing lawns in AfricaBiological Reviews, 90
M. Voeten, C. Vijver, H. Olff, F. Langevelde (2010)
Possible causes of decreasing migratory ungulate populations in an East African savannah after restrictions in their seasonal movementsAfrican Journal of Ecology, 48
(2006)
Flowering phenology and seed biology of selected tropical perennial grasses
O. Sala, A. Austin (2000)
Methods of Estimating Aboveground Net Primary Productivity
J. Morisette, A. Richardson, A. Knapp, J. Fisher, E. Graham, J. Abatzoglou, B. Wilson, D. Breshears, G. Henebry, J. Hanes, L. Liang (2009)
Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century.Frontiers in Ecology and the Environment, 7
(2014)
The lme 4 package . R package version , 2 ( 1 ) , 74
M. Kimani, Joost Hoedjes, Z. Su (2017)
An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East AfricaRemote. Sens., 9
A. Huete, R. Jackson, D. Post (1985)
Spectral response of a plant canopy with different soil backgroundsRemote Sensing of Environment, 17
C. Funk, P. Peterson, M. Landsfeld, Diego Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland, L. Harrison, A. Hoell, J. Michaelsen (2015)
The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremesScientific Data, 2
Kerry Byrne, W. Lauenroth, P. Adler, Christine Byrne (2011)
Estimating Aboveground Net Primary Production in Grasslands: A Comparison of Nondestructive Methods, 64
J. Paruelo, H. Epstein, W. Lauenroth, I. Burke (1997)
ANPP ESTIMATES FROM NDVI FOR THE CENTRAL GRASSLAND REGION OF THE UNITED STATESEcology, 78
Aikens E.O. (2017)
741Ecology Letters, 20
J. Ruppert, A. Linstädter (2014)
Convergence between ANPP estimation methods in grasslands - A practical solution to the comparability dilemmaEcological Indicators, 36
(2001)
Topographic position and landforms analysis. Poster presentation, ESRI user conference
Baret F. (1991)
161Remote Sensing of Environment, 35
S. McNaughton, M. Oesterheld, D. Frank, Kevin Williams (1989)
Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitatsNature, 341
J. Reu, J. Bourgeois, M. Bats, A. Zwertvaegher, V. Gelorini, P. Smedt, W. Chu, M. Antrop, P. Maeyer, P. Finke, M. Meirvenne, J. Verniers, P. Crombé (2013)
Application of the topographic position index to heterogeneous landscapesGeomorphology, 186
A. Sinclair, J. Hopcraft, S. Mduma, K. Galvin (2008)
Historical and future changes to the Serengeti ecosystem
R.G. Miller (1974)
The jackknife?a review, 61
C. Mbow, R. Fensholt, K. Rasmussen, D. Diop (2013)
Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurementsJournal of Arid Environments, 97
W. Reid, H. Mooney, D. Capistrano, S. Carpenter, K. Chopra, A. Cropper, P. Dasgupta, R. Hassan, R. Leemans, R. May, P. Pingali, C. Samper, R. Scholes, R. Watson, A. Zakri, Shidong Zhao, R. Costanza (2006)
Nature: the many benefits of ecosystem servicesNature, 443
G. Filippa, E. Cremonese, M. Migliavacca, M. Galvagno, M. Forkel, L. Wingate, E. Tomelleri, U. Cella, A. Richardson (2016)
Phenopix: A R package for image-based vegetation phenologyAgricultural and Forest Meteorology, 220
K.P. Burnham, D.R. Anderson (2004)
Multimodel inference: understanding AIC and BIC in model selection, 33
(2016)
Sentinel - 2 Sen 2 Cor : L 2 A processor for users
Alberton B. (2017)
82Perspectives in Ecology and Conservation, 15
R. Team (2014)
R: A language and environment for statistical computing.MSOR connections, 1
Ashley Miller (2011)
Role of IL-33 in inflammation and diseaseJournal of Inflammation (London, England), 8
S. Schwinning, O. Sala (2004)
Hierarchy of responses to resource pulses in arid and semi-arid ecosystemsOecologia, 141
A. Huete, K. Didan, T. Miura, E. Rodriguez, Xiang Gao, L. Ferreira (2002)
Overview of the radiometric and biophysical performance of the MODIS vegetation indicesRemote Sensing of Environment, 83
(2016)
2016) Phenopix: AR package
A. Richardson, T. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, M. Toomey (2013)
Climate change, phenology, and phenological control of vegetation feedbacks to the climate systemAgricultural and Forest Meteorology, 169
F. Baret, G. Guyot (1991)
Potentials and limits of vegetation indices for LAI and APAR assessmentRemote Sensing of Environment, 35
Bruna Alberton, R. Torres, L. Cancian, Bruno Borges, J. Almeida, G. Mariano, J. Santos, L. Morellato (2017)
Introducing digital cameras to monitor plant phenology in the tropics: applications for conservationPerspectives in Ecology and Conservation, 15
E. Melaas, D. Sulla‐Menashe, J. Gray, T. Black, T. Morin, A. Richardson, M. Friedl (2016)
Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from LandsatRemote Sensing of Environment, 186
K. Williams, B. Wilsey, S. McNaughton, F. Banyikwa (1998)
Temporally variable rainfall does not limit yields of Serengeti grassesOikos, 81
S. McNaughton, F. Banyikwa, M. McNaughton (1997)
Promotion of the cycling of diet-enhancing nutrients by african grazersScience, 278 5344
(2016)
DescTools: tools for descriptive statistics. R package version 0.99-18. R Foundation for Statistical Computing
K. Burnham, David Anderson (2004)
Understanding AIC and BIC in Model Selection
Determining the drivers of aboveground net primary production (ANPP), a key ecosystem process, is an important goal of ecosystem ecology. However, accurate estimation of ANPP across larger areas remains challenging, especially for savanna ecosystems that are characterized by large spatiotemporal heterogeneity in ANPP. Satellite remote sensing methods are frequently used to estimate productivity at the landscape scale but generally lack the spatial and temporal resolution to capture the determinants of productivity variation. Here, we developed and tested methods for estimating herbaceous productivity as an alternative to labour‐intensive repeated biomass clipping and caging of small plots. We compared measures of three spectral greenness indices, normalized difference vegetation index derived from Sentinel‐2 (NDVIs) and a handheld radiometer (NDVIg), and green chromatic coordinate derived from digital repeat cameras (GCC) and tested their relationship to biweekly field‐measured herbaceous ANPP using movable exclosures. We found that a satellite‐based model including average NDVIs and its rate of change (ΔNDVIs) over the biweekly productivity measurement interval predicted herbaceous ANPP reasonably well (Jackknife R2 = 0.26). However, the predictive accuracy doubled (Jackknife R2 = 0.52) when including the sum of day to day increases in camera trap‐derived vegetation greenness (tGCC). This result can be considered promising, given the current lack of productivity estimation methods at comparable spatiotemporal resolution. We furthermore found that the fine (daily) temporal resolution of GCC time series captured fast vegetation responses to rainfall events that were missed when using a coarser temporal resolution (>2 days). These findings demonstrate the importance of measuring at a fine temporal resolution for predicting herbaceous ANPP in savanna ecosystems. We conclude that camera traps are promising in offering a reliable and cost‐effective method to estimate productivity in savannas and contribute to a better understanding of ecosystem functioning and its drivers.
Remote Sensing in Ecology and Conservation – Wiley
Published: Oct 1, 2022
Keywords: ANPP; digital repeat photography; grasslands; rangelands; remote sensing; Sentinel‐2
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.