Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

CHARACTERIZING VARIATIONS IN SOIL PARTICLE‐SIZE DISTRIBUTION ALONG A GRASS–DESERT SHRUB TRANSITION IN THE ORDOS PLATEAU OF INNER MONGOLIA, CHINA

CHARACTERIZING VARIATIONS IN SOIL PARTICLE‐SIZE DISTRIBUTION ALONG A GRASS–DESERT SHRUB... ABSTRACTThe application of fractal geometry to describe soil degradation and dynamics is becoming a useful tool for better understanding of the performance of soil systems. In this study, four different land cover types, which represent a sequence of grass–desert shrub transition and a gradient of desertification, were selected, and soils at depths of 0–10, 10–20 and 20–40 cm were sampled in the Ordos Plateau of Inner Mongolia, PR China. The fractal theory was used to analyse the soil particle‐size distribution (PSD) and its variations. The results showed that (i) vegetation conversion and desertification significantly changed the soil PSD. During the desertification process, soil coarse fractions that ranged from 250 to 100 µm significantly increased, whereas fine fractions lower than 50 µm significantly decreased (p < 0·01); (ii) fractal model of the accumulative volume particle‐size distribution is appropriate, and fractal dimensions (Dm) of soil PSD significantly decreased along the sequence of grass–desert shrub transition; (iii) Dm is more sensitive to the desertification process, and therefore, we suggest Dm other than soil texture and soil organic carbon as a reliable parameter to reflect the soil environment change induced by desertification. Copyright © 2011 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Land Degradation and Development Wiley

CHARACTERIZING VARIATIONS IN SOIL PARTICLE‐SIZE DISTRIBUTION ALONG A GRASS–DESERT SHRUB TRANSITION IN THE ORDOS PLATEAU OF INNER MONGOLIA, CHINA

Loading next page...
 
/lp/wiley/characterizing-variations-in-soil-particle-size-distribution-along-a-rDNVBSwY1P

References (31)

Publisher
Wiley
Copyright
Copyright © 2013 John Wiley & Sons, Ltd.
ISSN
1085-3278
eISSN
1099-145X
DOI
10.1002/ldr.1112
Publisher site
See Article on Publisher Site

Abstract

ABSTRACTThe application of fractal geometry to describe soil degradation and dynamics is becoming a useful tool for better understanding of the performance of soil systems. In this study, four different land cover types, which represent a sequence of grass–desert shrub transition and a gradient of desertification, were selected, and soils at depths of 0–10, 10–20 and 20–40 cm were sampled in the Ordos Plateau of Inner Mongolia, PR China. The fractal theory was used to analyse the soil particle‐size distribution (PSD) and its variations. The results showed that (i) vegetation conversion and desertification significantly changed the soil PSD. During the desertification process, soil coarse fractions that ranged from 250 to 100 µm significantly increased, whereas fine fractions lower than 50 µm significantly decreased (p < 0·01); (ii) fractal model of the accumulative volume particle‐size distribution is appropriate, and fractal dimensions (Dm) of soil PSD significantly decreased along the sequence of grass–desert shrub transition; (iii) Dm is more sensitive to the desertification process, and therefore, we suggest Dm other than soil texture and soil organic carbon as a reliable parameter to reflect the soil environment change induced by desertification. Copyright © 2011 John Wiley & Sons, Ltd.

Journal

Land Degradation and DevelopmentWiley

Published: Mar 1, 2013

There are no references for this article.