Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Chemistry with ADF

Chemistry with ADF We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order‐N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency‐dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF‐typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation‐strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time‐dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational Chemistry Wiley

Loading next page...
 
/lp/wiley/chemistry-with-adf-EMxrYrV3XJ

References (256)

Publisher
Wiley
Copyright
Copyright © 2001 John Wiley & Sons, Inc.
ISSN
0192-8651
eISSN
1096-987X
DOI
10.1002/jcc.1056
Publisher site
See Article on Publisher Site

Abstract

We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order‐N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency‐dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF‐typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation‐strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time‐dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

Journal

Journal of Computational ChemistryWiley

Published: Jul 15, 2001

There are no references for this article.