Access the full text.
Sign up today, get DeepDyve free for 14 days.
Paul Pau, J. Berg, W. McMillan (1990)
Application of Stokes' law to ions in aqueous solutionThe Journal of Physical Chemistry, 94
Daeryung Koo, S. Kang (2021)
Nitrate Molten Salt Electrolytes with Iron Oxide Catalysts for Open and Sealed Li-O2 Batteries.ACS applied materials & interfaces
Colin Burke, V. Pande, Abhishek Khetan, V. Viswanathan, B. McCloskey (2015)
Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacityProceedings of the National Academy of Sciences, 112
Zhuojian Liang, Yi‐Chun Lu (2016)
Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.Journal of the American Chemical Society, 138 24
Yun Zhu, Qi Liu, Y. Rong, Haomin Chen, Jing Yang, Chuankun Jia, Li-Juan Yu, A. Karton, Yang Ren, Xiaoxiong Xu, S. Adams, Qing Wang (2017)
Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteriesNature Communications, 8
V. Gutmann (1976)
Empirical parameters for donor and acceptor properties of solventsElectrochimica Acta, 21
Masato Yanagi, K. Ueno, A. Ando, Shanglin Li, Yoshiharu Matsumae, Jiali Liu, Kaoru Dokko, M. Watanabe (2020)
Effects of Polysulfide Solubility and Li Ion Transport on Performance of Li–S Batteries Using Sparingly Solvating ElectrolytesJournal of The Electrochemical Society
Wu Xu, Jie Xiao, Deyu Wang, Jian Zhang, Ji‐Guang Zhang (2010)
Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air BatteriesJournal of The Electrochemical Society, 157
Yu‐Xing Yao, Xiang Chen, Chong Yan, Xue‐Qiang Zhang, Wenlong Cai, Jiaqi Huang, Qiang Zhang (2020)
Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly-Solvating Electrolyte.Angewandte Chemie
P. Colonomos, P. Wolynes (1979)
Molecular theory of solvated ion dynamics. II. Fluid structure and ionic mobilitiesJournal of Chemical Physics, 71
Xue‐Qiang Zhang, Qi Jin, Yiling Nan, Li-Peng Hou, Bo‐Quan Li, Xiang Chen, Zhehui Jin, Xitian Zhang, Jiaqi Huang, Qiang Zhang (2021)
Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical Lithium-Sulfur Batteries.Angewandte Chemie
Nagaphani Aetukuri, B. McCloskey, J. Garc'ia, L. Krupp, V. Viswanathan, A. Luntz (2014)
On the Origin and Implications of Li$_2$O$_2$ Toroid Formation in Nonaqueous Li-O$_2$ Batteries
(2022)
Revealing Interfacial Reactions and Charge Transfer Kinetics in Electrochemical Energy Storage and Conversion
Jun Ming, Zhen Cao, Yingqiang Wu, Wandi Wahyudi, Wenxi Wang, Xianrong Guo, L. Cavallo, Jang‐Yeon Hwang, A. Shamim, Lain‐Jong Li, Yang‐Kook Sun, H. Alshareef (2019)
New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion BatteriesACS Energy Letters
Y. Kato, Satoshi Hori, T. Saito, Kota Suzuki, M. Hirayama, Akio Mitsui, M. Yonemura, H. Iba, R. Kanno (2016)
High-power all-solid-state batteries using sulfide superionic conductorsNature Energy, 1
Yuchi Tsao, Minah Lee, Elizabeth Miller, Guoping Gao, Jihye Park, Shucheng Chen, Toru Katsumata, Helen Tran, Lin-wang Wang, M. Toney, Yi Cui, Zhenan Bao (2019)
Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S BatteriesJoule
Daniel Sharon, Michal Afri, M. Noked, A. Garsuch, A. Frimer, D. Aurbach (2013)
Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of OxygenJournal of Physical Chemistry Letters, 4
Y. Marcus (1987)
The thermodynamics of solvation of ions. Part 2.—The enthalpy of hydration at 298.15 KJournal of the Chemical Society, Faraday Transactions, 83
A. Tkacheva, Bing Sun, Jinqiang Zhang, Guoxiu Wang, A. McDonagh (2021)
Nitronyl Nitroxide-Based Redox Mediators for Li-O2 BatteriesJournal of Physical Chemistry C, 125
K. Tasaki, A. Goldberg, Jianing Lian, M. Walker, A. Timmons, S. Harris (2009)
Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic SolventsJournal of The Electrochemical Society, 156
Zhejun Li, Yucun Zhou, Y. Wang, Yi‐Chun Lu (2018)
Solvent‐Mediated Li2S Electrodeposition: A Critical Manipulator in Lithium–Sulfur BatteriesAdvanced Energy Materials, 9
K. Xu (2004)
Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical reviews, 104 10
Casey Kelly, C. Cramer, D. Truhlar (2007)
Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide.The journal of physical chemistry. B, 111 2
D. Aurbach, B. McCloskey, L. Nazar, P. Bruce (2016)
Advances in understanding mechanisms underpinning lithium–air batteriesNature Energy, 1
M. Uematsu, E. Frank (1980)
Static Dielectric Constant of Water and SteamJournal of Physical and Chemical Reference Data, 9
Yuki Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, Makoto Yaegashi, Y. Tateyama, A. Yamada (2014)
Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries.Journal of the American Chemical Society, 136 13
Chun Xia, C. Kwok, L. Nazar (2018)
A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxideScience, 361
G. Leverick, M. Tulodziecki, R. Tatara, F. Bardé, Y. Shao-horn (2019)
Solvent-Dependent Oxidizing Power of LiI Redox Couples for Li-O2 BatteriesJoule
Laidong Zhou, Tong‐Tong Zuo, C. Kwok, Se Kim, A. Assoud, Qiang Zhang, J. Janek, L. Nazar (2022)
High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytesNature Energy, 7
Adrian Schürmann, B. Luerssen, Doreen Mollenhauer, J. Janek, D. Schröder (2021)
Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory.Chemical reviews
Cheng Jiang, Qingqing Jia, M. Tang, Kun Fan, Yuan Chen, Mingxuan Sun, Shuaifei Xu, Yanchao Wu, Chenyang Zhang, Jing Ma, Chengliang Wang, Wenping Hu (2021)
Regulating the Solvation Sheath of Li Ions by Hydrogen Bonds for Highly Stable Lithium-Metal Anodes.Angewandte Chemie
Thomas Batcho, G. Leverick, Y. Shao-horn, C. Thompson (2019)
Modeling the Effect of Lithium Superoxide Solvation and Surface Reduction Kinetics on Discharge Capacity in Lithium–Oxygen BatteriesThe Journal of Physical Chemistry C
(2014)
www.advenergymat.de www.advancedsciencenews.com 2204094
Liumin Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, Xiulin Fan, Chao Luo, Chunsheng Wang, K. Xu (2015)
“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistriesScience, 350
P. Bruce, S. Freunberger, L. Hardwick, J. Tarascon (2011)
Li-O2 and Li-S batteries with high energy storage.Nature materials, 11 1
M. Doyle, T. Fuller, J. Newman (1994)
The importance of the lithium ion transference number in lithium/polymer cellsElectrochimica Acta, 39
Benjamin Bergner, Adrian Schürmann, Klaus Peppler, A. Garsuch, J. Janek (2014)
TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries.Journal of the American Chemical Society, 136 42
Xingwen Yu, Zhonghe Bi, F. Zhao, A. Manthiram (2016)
Polysulfide‐Shuttle Control in Lithium‐Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON‐Type Solid ElectrolyteAdvanced Energy Materials, 6
Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, Haoshen Zhou, K. Oh-ishi (2013)
Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+)Journal of Physical Chemistry C, 117
V. Pande, V. Viswanathan (2019)
Descriptors for Electrolyte-Renormalized Oxidative Stability of Solvents in Lithium-Ion Batteries.The journal of physical chemistry letters
M. Radin, Donald Siegel (2013)
Charge transport in lithium peroxide: relevance for rechargeable metal–air batteriesEnergy and Environmental Science, 6
B. McCloskey, A. Speidel, R. Scheffler, D. Miller, V. Viswanathan, J. Hummelshøj, J. Nørskov, A. Luntz (2012)
Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries.The journal of physical chemistry letters, 3 8
S. Jeong, M. Inaba, Y. Iriyama, T. Abe, Z. Ogumi (2003)
Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutionsElectrochemical and Solid State Letters, 6
Moran Balaish, Xiangwen Gao, P. Bruce, Y. Ein‐Eli (2019)
Enhanced Li‐O2 Battery Performance in a Binary “Liquid Teflon” and Dual Redox MediatorsAdvanced Materials Technologies, 4
J. Tarascon, D. Guyomard (1994)
New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cellsSolid State Ionics, 69
Nan Xin, Yanjun Sun, M. He, C. Radke, J. Prausnitz (2018)
Solubilities of six lithium salts in five non-aqueous solvents and in a few of their binary mixturesFluid Phase Equilibria, 461
M. Amereller, M. Whittingham (2004)
Lithium batteries and cathode materials.Chemical reviews, 104 10
Semin Lee, Chun-Hsing Chen, A. Flood (2013)
A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes.Nature chemistry, 5 8
O. Borodin, J. Self, K. Persson, Chunsheng Wang, K. Xu (2020)
Uncharted Waters: Super-Concentrated ElectrolytesJoule
Fang Liu, Geng Sun, H. Wu, Gen Chen, Duo Xu, Runwei Mo, Li Shen, Xianyang Li, Shengxiang Ma, Ran Tao, Xinru Li, X. Tan, Bin Xu, Ge Wang, B. Dunn, P. Sautet, Yunfeng Lu (2020)
Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteriesNature Communications, 11
R. Tatara, Yang Yu, Pinar Karayaylali, Averey Chan, Yirui Zhang, Roland Jung, F. Maglia, L. Giordano, Shaowu Yang (2019)
Enhanced Cycling Performance of Ni-rich Positive Electrodes (NMC) in Li-ion Batteries by Reducing Electrolyte Free-solvent Activity.ACS applied materials & interfaces
Chi‐Cheung Su, Meinan He, Jiayan Shi, R. Amine, Jian Zhang, K. Amine (2020)
Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium Metal Batteries.Angewandte Chemie
Lei Cheng, L. Curtiss, K. Zavadil, K. Zavadil, A. Gewirth, Yuyan Shao, Yuyan Shao, K. Gallagher (2016)
Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur BatteriesACS energy letters, 1
Cameron Bentley, A. Bond, A. Hollenkamp, P. Mahon, Jie Zhang (2013)
Unexpected complexity in the electro-oxidation of iodide on gold in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.Analytical chemistry, 85 23
P. Johansson, J. Grondin, J. Lassègues (2010)
Structural and vibrational properties of diglyme and longer glymes.The journal of physical chemistry. A, 114 39
L. Johnson, Chunmei Li, Zheng Liu, Yuhui Chen, S. Freunberger, P. Ashok, B. Praveen, K. Dholakia, J. Tarascon, P. Bruce (2014)
The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nature chemistry, 6 12
Jingjuan Li, S. Ding, Shiming Zhang, Wei Yan, Zifeng Ma, Xianxia Yuan, L. Mai, Jiujun Zhang (2021)
Catalytic redox mediators for non-aqueous Li-O2 batteryEnergy Storage Materials, 43
Rosamaría Fong, U. Sacken, J. Dahn (1990)
Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical CellsJournal of The Electrochemical Society, 137
G. Leverick (2022)
Towards Comprehensive Design of Electrolytes for Electrochemical Energy Storage, Ph.D. Thesis
H. Zarrin, Siamak Farhad, F. Hamdullahpur, V. Chabot, A. Yu, M. Fowler, Zhongwei Chen (2014)
Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power DensitiesElectrochimica Acta, 125
Xiangwen Gao, Yuhui Chen, L. Johnson, Zarko Jovanov, P. Bruce (2017)
A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathodeNature Energy, 2
Vincent Giordani, Dylan Tozier, H. Tan, Colin Burke, Betar Gallant, J. Uddin, J. Greer, B. McCloskey, Gregory Chase, Dan Addison (2016)
A Molten Salt Lithium-Oxygen Battery.Journal of the American Chemical Society, 138 8
Yosuke Ugata, Gen Hasegawa, N. Kuwata, K. Ueno, M. Watanabe, Kaoru Dokko (2022)
Temperature Dependency of Ion Transport in Highly Concentrated Li Salt/Sulfolane Electrolyte SolutionsThe Journal of Physical Chemistry C
Chao Shen, Jianxin Xie, Mei Zhang, P. Andrei, M. Hendrickson, E. Plichta, Jim Zheng (2017)
Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacityElectrochimica Acta, 248
Kaoru Dokko, Daiki Watanabe, Yosuke Ugata, Morgan Thomas, S. Tsuzuki, W. Shinoda, Kei Hashimoto, K. Ueno, Y. Umebayashi, M. Watanabe (2018)
Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes.The journal of physical chemistry. B, 122 47
K. Kreuer, S. Paddison, E. Spohr, M. Schuster (2004)
Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology.Chemical reviews, 104 10
D. Kwabi, N. Ortiz‐Vitoriano, S. Freunberger, Y. Chen, N. Imanishi, P. Bruce, Y. Shao-horn (2014)
Materials challenges in rechargeable lithium-air batteriesMRS Bulletin, 39
Rui Guo, Kyeong-Ho Kim, Betar Gallant (2022)
Impact of LiF Particle Morphology on Overpotential and Structure of Li Metal DepositionJournal of The Electrochemical Society
G. Leverick, Yun Zhu, Sarah Lohmar, F. Bardé, S. Cotte, Y. Shao-horn (2022)
Six-Electron Reduction of LiIO3 to LiOH in Aprotic Solvents and Implications for Li–O2 BatteriesThe Journal of Physical Chemistry C
B. Qiao, G. Leverick, Wei Zhao, A. Flood, Jeremiah Johnson, Y. Shao-horn (2018)
Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes.Journal of the American Chemical Society, 140 35
O. Borodin, G. Smith (2007)
Li+ Transport Mechanism in Oligo(Ethylene Oxide)s Compared to CarbonatesJournal of Solution Chemistry, 36
A. Manthiram, Yongzhu Fu, Yu‐Sheng Su (2013)
Challenges and prospects of lithium-sulfur batteries.Accounts of chemical research, 46 5
Yulin Jie, Xiaodi Ren, R. Cao, Wenbin Cai, Shuhong Jiao (2020)
Advanced Liquid Electrolytes for Rechargeable Li Metal BatteriesAdvanced Functional Materials, 30
S. Jeschke, P. Johansson (2017)
Predicting the Solubility of Sulfur: A COSMO-RS-Based Approach to Investigate Electrolytes for Li-S Batteries.Chemistry, 23 38
Xiao‐Qing Zhu, Chun-Hua Wang (2010)
Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN.The Journal of organic chemistry, 75 15
Shuru Chen, Jianming Zheng, Donghai Mei, K. Han, M. Engelhard, Wengao Zhao, Wu Xu, Jun Liu, Ji‐Guang Zhang (2018)
High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration ElectrolytesAdvanced Materials, 30
D. Boyle, Xian Kong, Allen Pei, Paul Rudnicki, Feifei Shi, W. Huang, Z. Bao, Jian Qin, Yi Cui (2020)
Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal AnodesACS energy letters, 5
D. Rolison, L. Nazar (2011)
Electrochemical energy storage to power the 21st centuryMRS Bulletin, 36
Yuhui Chen, S. Freunberger, Zhangquan Peng, O. Fontaine, P. Bruce (2013)
Charging a Li-O₂ battery using a redox mediator.Nature chemistry, 5 6
Yves Cahen, P. Handy, Eric Roach, A. Popov (1975)
Spectroscopic studies of ionic solvation. XVI. Lithium-7 and chlorine-35 nuclear magnetic resonance studies in various solventsThe Journal of Physical Chemistry, 79
Cormac Laoire, S. Mukerjee, K. Abraham, E. Plichta, M. Hendrickson (2010)
Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air BatteryJournal of Physical Chemistry C, 114
T. Østergaard, L. Giordano, I. Castelli, F. Maglia, Byron Antonopoulos, Y. Shao-horn, J. Rossmeisl (2018)
Oxidation of Ethylene Carbonate on Li Metal Oxide SurfacesJournal of Physical Chemistry C, 122
Xavier Bogle, Rafael Vazquez, S. Greenbaum, A. Cresce, K. Xu (2013)
Understanding Li(+)-Solvent Interaction in Nonaqueous Carbonate Electrolytes with (17)O NMR.The journal of physical chemistry letters, 4 10
Shuting Feng, Mingjun Huang, Jessica Lamb, Wenxu Zhang, R. Tatara, Yirui Zhang, Yun Zhu, Collin Perkinson, Jeremiah Johnson, Y. Shao-horn (2019)
Molecular Design of Stable Sulfamide- and Sulfonamide-based Electrolytes for Aprotic Li-O2 Batteries.Chem, 5 10
Kaoru Dokko, Naoki Tachikawa, Kento Yamauchi, M. Tsuchiya, Azusa Yamazaki, E. Takashima, Jun-Woo Park, K. Ueno, S. Seki, Nobuyuki Serizawa, M. Watanabe (2013)
Solvate Ionic Liquid Electrolyte for Li–S BatteriesJournal of The Electrochemical Society, 160
Yang Yu, Pinar Karayaylali, Y. Katayama, L. Giordano, M. Gauthier, F. Maglia, Roland Jung, I. Lund, Y. Shao-horn (2018)
Coupled LiPF6 Decomposition and Carbonate Dehydrogenation Enhanced by Highly Covalent Metal Oxides in High-Energy Li-Ion BatteriesThe Journal of Physical Chemistry C
C. Jameson, H. Gutowsky (1964)
Calculation of Chemical Shifts. I. General Formulation and the Z DependenceJournal of Chemical Physics, 40
Nataliia Mozhzhukhina, L. Leo, E. Calvo (2013)
Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li–Air BatteryJournal of Physical Chemistry C, 117
Azusa Nakanishi, Morgan Thomas, Hoi-min Kwon, Yuki Kobayashi, R. Tatara, K. Ueno, Kaoru Dokko, M. Watanabe (2018)
Electrolyte Composition in Li/O2 Batteries with LiI Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox ShuttlingJournal of Physical Chemistry C, 122
Nicolas Dubouis, A. Serva, Roxanne Berthin, Guillaume Jeanmairet, Benjamin Porcheron, Elodie Salager, M. Salanne, A. Grimaud (2020)
Tuning water reduction through controlled nanoconfinement within an organic liquid matrixNature Catalysis, 3
Shiyu Zhang, Yun Yang, Liwei Cheng, Jian Sun, Xiaomei Wang, P. Nan, C. Xie, Haisheng Yu, Yuanhua Xia, B. Ge, Jun Lin, Lin-juan Zhang, C. Guan, G. Xiao, Cheng Peng, G. Chen, Jian-Qiang Wang (2021)
Quasi-solid-state electrolyte for rechargeable high-temperature molten salt iron-air batteryEnergy Storage Materials, 35
R. Tatara, D. Kwabi, Thomas Batcho, M. Tulodziecki, Kenta Watanabe, Hoi-min Kwon, Morgan Thomas, K. Ueno, C. Thompson, Kaoru Dokko, Y. Shao-horn, M. Watanabe (2017)
Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl SulfoxideJournal of Physical Chemistry C, 121
Raymond Wong, Chunzhen Yang, Arghya Dutta, Minho O, Misun Hong, Morgan Thomas, K. Yamanaka, T. Ohta, K. Waki, H. Byon (2018)
Critically Examining the Role of Nanocatalysts in Li–O2 Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and CyclabilityACS energy letters
Gustavo Hobold, Jeffrey Lopez, Ruiduo Guo, Nicolò Minafra, A. Banerjee, Y. Meng, Y. Shao-horn, Betar Gallant (2021)
Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytesNature Energy, 6
Cameron Bentley, A. Bond, A. Hollenkamp, P. Mahon, Jie Zhang (2015)
Voltammetric Determination of the Iodide/Iodine Formal Potential and Triiodide Stability Constant in Conventional and Ionic Liquid MediaJournal of Physical Chemistry C, 119
Tong Zhang, Elie Paillard (2018)
Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion batteryFrontiers of Chemical Science and Engineering, 12
Dipan Kundu, Robert Black, Brian Adams, L. Nazar (2015)
A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen BatteriesACS Central Science, 1
D. Kwabi, Thomas Batcho, Chibueze Amanchukwu, N. Ortiz‐Vitoriano, P. Hammond, C. Thompson, Y. Shao-horn (2014)
Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.The journal of physical chemistry letters, 5 16
A. Parker (1969)
Protic-dipolar aprotic solvent effects on rates of bimolecular reactionsChemical Reviews, 69
Yangyang Liu, Xieyu Xu, M. Sadd, O. Kapitanova, V. Krivchenko, Jun Ban, Jialin Wang, Xingxing Jiao, Z. Song, Jiangxuan Song, Shizhao Xiong, A. Matic (2021)
Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium MetalAdvanced Science, 8
Yuki Yamada, Y. Iriyama, T. Abe, Z. Ogumi (2009)
Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film.Langmuir : the ACS journal of surfaces and colloids, 25 21
Jianxun Zhu, Xiaolei Li, Changwei Wu, Jian Gao, Henghui Xu, Yutao Li, Xiangxin Guo, Hong Li, Weidong Zhou (2020)
A Multilayer Ceramic Electrolyte for All-solid-state Li Batteries.Angewandte Chemie
Rusong Chen, Qinghao Li, Xiqian Yu, Liquan Chen, Hong Li (2019)
Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces.Chemical reviews
K. Xu, A. Cresce, U. Lee (2010)
Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface.Langmuir : the ACS journal of surfaces and colloids, 26 13
V. Nikitina, S. Vassiliev, K. Stevenson (2020)
Metal‐Ion Coupled Electron Transfer Kinetics in Intercalation‐Based Transition Metal OxidesAdvanced Energy Materials, 10
K. Xu (2014)
Electrolytes and interphases in Li-ion batteries and beyond.Chemical reviews, 114 23
Haining Gao, Betar Gallant (2020)
Advances in the chemistry and applications of alkali-metal–gas batteriesNature Reviews Chemistry, 4
Zhenxing Wang, Fulai Qi, L. Yin, Ying Shi, Chengguo Sun, B. An, Hui‐Ming Cheng, Feng Li (2020)
An Anion‐Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium AnodesAdvanced Energy Materials, 10
H. Clever, E. Westrum (1970)
Dimethyl sulfoxide and dimethyl sulfone. Heat capacities, enthalpies of fusion, and thermodynamic propertiesThe Journal of Physical Chemistry, 74
Qilong Xiong, C. Li, Ziwei Li, Y. Liang, Jianchen Li, Jun-min Yan, Gang Huang, Xin-bo Zhang (2022)
Hydrogen‐Bond‐Assisted Solution Discharge in Aprotic Li–O2 BatteriesAdvanced Materials, 34
Yun Zhu, G. Leverick, L. Giordano, Shuting Feng, Yirui Zhang, Yang Yu, R. Tatara, Jaclyn Lunger, Y. Shao-horn (2022)
Nitrate-mediated four-electron oxygen reduction on metal oxides for lithium-oxygen batteriesJoule
W. Torres, S. Herrera, A. Tesio, M. Pozo, E. Calvo (2015)
Soluble TTF catalyst for the oxidation of cathode products in Li-Oxygen battery: A chemical scavengerElectrochimica Acta, 182
J. Kim (2010)
The Ph4AsPh4B Assumption for Single Ion‐Thermodynamics and its Asymmetric Partition to Cation and AnionBulletin des Sociétés Chimiques Belges, 95
D. Fraggedakis, Michael McEldrew, Raymond Smith, Y. Krishnan, Yirui Zhang, P. Bai, W. Chueh, Shaowu Yang, M. Bazant (2020)
Theory of coupled ion-electron transfer kineticsarXiv: Chemical Physics
Xue‐Qiang Zhang, Xiang Chen, Xin‐Bing Cheng, Bo‐Quan Li, Xin Shen, Chong Yan, Jiaqi Huang, Qiang Zhang (2018)
Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.Angewandte Chemie, 57 19
Hee‐Dae Lim, Hyelynn Song, Jinsoo Kim, Hyeokjo Gwon, Youngjoon Bae, Kyu‐Young Park, Jihyun Hong, Haegyeom Kim, Taewoo Kim, Y. Kim, X. Lepró, R. Ovalle-Robles, R. Baughman, K. Kang (2014)
Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst.Angewandte Chemie, 53 15
P. Sipos, G. Hefter, P. May (2000)
Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M+ = Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 °CJournal of Chemical & Engineering Data, 45
G. Gritzner (1986)
Solvent effects on half-wave potentialsThe Journal of Physical Chemistry, 90
Aiping Wang, S. Kadam, Hong Li, S. Shi, Y. Qi (2018)
Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteriesnpj Computational Materials, 4
Kazuaki Matsumoto, Kazuhiko Inoue, K. Nakahara, R. Yuge, T. Noguchi, K. Utsugi (2013)
Suppression of aluminum corrosion by using high concentration LiTFSI electrolyteJournal of Power Sources, 231
J. Chen, S. Adelman (1980)
Macroscopic model for solvated ion dynamicsJournal of Chemical Physics, 72
G. Leverick, R. Tatara, Shuting Feng, E. Crabb, A. France-Lanord, M. Tulodziecki, Jeffrey Lopez, R. Stephens, J. Grossman, Y. Shao-horn (2020)
Solvent- and Anion-Dependent Li+–O2– Coupling Strength and Implications on the Thermodynamics and Kinetics of Li–O2 BatteriesJournal of Physical Chemistry C, 124
Yan Peng, Meng-Qiang Zhao, Zi-Xian Chen, Qian Cheng, Yiran Liu, Chang‐Xin Zhao, Bo‐Quan Li, Xinzhi Ma, Chengmeng Chen, Jiaqi Huang, Qiang Zhang (2021)
Full‐Range Redox Mediation on Sulfur Redox Kinetics for High‐Performance Lithium–Sulfur BatteriesBatteries & Supercaps
B. Cox, A. Parker (1973)
Entropies of solution of ions in waterJournal of the American Chemical Society, 95
Petr Chekushkin, I. Merenkov, V. Smirnov, S. Kislenko, V. Nikitina (2021)
The physical origin of the activation barrier in Li-ion intercalation processes: the overestimated role of desolvationElectrochimica Acta, 372
Xiangwen Gao, Yuhui Chen, L. Johnson, P. Bruce (2016)
Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions.Nature materials, 15 8
Kyle Jiang, Gustavo Hobold, Rui Guo, Kyeong-Ho Kim, A. Melemed, Dongniu Wang, L. Zuin, Betar Gallant (2022)
Probing the Functionality of LiFSI Structural Derivatives as Additives for Li Metal AnodesACS Energy Letters
G. Leverick, Shuting Feng, Pedro Acosta, Samuel Acquaviva, F. Bardé, S. Cotte, Y. Shao-horn (2022)
Tunable Redox Mediators for Li-O2 Batteries Based on Interhalide Complexes.ACS applied materials & interfaces
Jian He, Huaping Wang, Qing Zhou, Shihan Qi, Mingguang Wu, Fang Li, Wei Hu, Jianmin Ma (2021)
Unveiling the Role of Li+ Solvation Structures with Commercial Carbonates in the Formation of Solid Electrolyte Interphase for Lithium Metal BatteriesSmall Methods, 5
Hoi-min Kwon, Morgan Thomas, R. Tatara, Azusa Nakanishi, Kaoru Dokko, M. Watanabe (2017)
Effect of Anion in Glyme-based Electrolyte for Li-O2 Batteries: Stability/Solubility of Discharge IntermediateChemistry Letters, 46
B. Qiao, Somesh Mohapatra, Jeffrey Lopez, G. Leverick, R. Tatara, Yoshiki Shibuya, Yivan Jiang, A. France-Lanord, J. Grossman, Rafael Gómez-Bombarelli, Jeremiah Johnson, Y. Shao-horn (2020)
Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium ElectrolytesACS Central Science, 6
D. Rosseinsky (1965)
Electrode Potentials and Hydration Energies. Theories and CorrelationsChemical Reviews, 65
D. Zheng, Xuran Zhang, C. Li, M. McKinnon, R. Sadok, D. Qu, Xiqian Yu, H. Lee, Xiao‐Qing Yang, D. Qu (2015)
Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-Aqueous Electrolyte for Lithium-Sulfur BatteriesJournal of The Electrochemical Society, 162
J. Bachman, S. Muy, A. Grimaud, Hao-Hsun Chang, N. Pour, S. Lux, O. Paschos, F. Maglia, Saskia Lupart, P. Lamp, L. Giordano, Y. Shao-horn (2015)
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.Chemical reviews, 116 1
M. Whittingham (2014)
Ultimate limits to intercalation reactions for lithium batteries.Chemical reviews, 114 23
Tao Liu, M. Leskes, Wan-Jing Yu, A. Moore, Lina Zhou, P. Bayley, Gunwoo Kim, C. Grey (2015)
Cycling Li-O2 batteries via LiOH formation and decompositionScience, 350
Y. Marcus (1983)
Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part I - Gibbs free energies of transfer to nonaqueous solventsPure and Applied Chemistry, 55
Chang Kim, J. Won, H. Kim, Y. Kang, H. Li, Chan Kim (2001)
Density functional theory studies on the dissociation energies of metallic salts: relationship between lattice and dissociation energiesJournal of Computational Chemistry, 22
D. Kwabi, V. Bryantsev, Thomas Batcho, D. Itkis, C. Thompson, Y. Shao-horn (2016)
Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.Angewandte Chemie, 55 9
(2022)
Towards Comprehensive Design of Electrolytes for Electrochemical Energy Storage
K. Xu (2007)
“Charge-Transfer” Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li + in Nonaqueous ElectrolytesJournal of The Electrochemical Society, 154
Vincent Giordani, Dylan Tozier, J. Uddin, H. Tan, Betar Gallant, B. McCloskey, J. Greer, Gregory Chase, Dan Addison (2019)
Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redoxNature Chemistry, 11
A. Cresce, K. Xu (2011)
Preferential Solvation of Li+ Directs Formation of Interphase on Graphitic AnodeElectrochemical and Solid State Letters, 14
C. Wan, Mary Hu, O. Borodin, Jiangfeng Qian, Zhaohai Qin, Ji‐Guang Zhang, J. Hu (2016)
Natural abundance 17 O, 6 Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytesJournal of Power Sources, 307
Tao Liu, Gunwoo Kim, Erlendur Jónsson, E. Castillo‐Martínez, I. Temprano, Yuanlong Shao, J. Carretero‐González, R. Kerber, C. Grey (2018)
Understanding LiOH Formation in a Li-O2 Battery with LiI and H2O AdditivesACS Catalysis
Electrolytes will play a central role in the development of next‐generation batteries with increased energy density and cycle life and reduced cost. While molecular designs can enable electrolytes with favorable properties like increased (electro)chemical stability, such properties can be manipulated additionally through the intermolecular interactions among species within the electrolyte. In this mini‐review, a number of intermolecular interactions in the electrolyte that can give rise to significant enhancement in battery functions are highlighted. The critical role of reactant and product solubility is shown in battery reactions, where increasing solubility can enable a dissolution–precipitation reaction pathway, decrease overpotential, and increase capacity. Through the intermolecular interactions among solvent, additives, and ions, the reactivity of electrolyte species can be altered significantly by either enhancing solvent (electro)chemical stability or facilitating water deprotonation in Li–O2 reactions. It is shown that incorporating redox active species in the electrolyte can reduce the reaction overpotential and enhance cycle life. Moreover, intermolecular interactions that can increase the ionic conductivity and transference number of electrolytes are identified. Finally, future opportunities are highlighted to exploit these intermolecular interactions to gain unprecedented molecular control over the electrolyte and enable next‐generation batteries.
Advanced Energy Materials – Wiley
Published: Apr 1, 2023
Keywords: electrolytes; intermolecular interactions; lithium batteries; redox mediators; solubility; solvation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.