Access the full text.
Sign up today, get DeepDyve free for 14 days.
Jordan Ubbens, I. Stavness (2017)
Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping TasksFrontiers in Plant Science, 8
J. Lepš, Všra Hadincová (1992)
How reliable are our vegetation analysesJournal of Vegetation Science, 3
T. Kattenborn, M. Sperlich, K. Bataua, B. Koch (2014)
Automatic Single Tree Detection in Plantations using UAV-based Photogrammetric Point cloudsISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
O. Ronneberger, P. Fischer, T. Brox (2015)
U-Net: Convolutional Networks for Biomedical Image SegmentationArXiv, abs/1505.04597
J. Müllerová, J. Brůna, T. Bartaloš, P. Dvořák, M. Vítková, P. Pyšek (2017)
Timing is important: unmanned aircraft vs. satellite imagery in plant invasion monitoring. Frontiers, 8
P. Guerrero, R. Bustamante (2007)
Can native tree species regenerate in Pinus radiata plantations in Chile?: Evidence from field and laboratory experimentsForest Ecology and Management, 253
K. Moffett, W. Nardin, S. Silvestri, Chen Wang, S. Temmerman (2015)
Remote Sens
D. Hubel, T. Wiesel (1962)
Receptive fields, binocular interaction and functional architecture in the cat's visual cortexThe Journal of Physiology, 160
T. Kattenborn, Javier Lopatin, M. Förster, A. Braun, F. Fassnacht (2019)
UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 dataRemote Sensing of Environment
Javier Lopatin, F. Fassnacht, T. Kattenborn, S. Schmidtlein (2017)
Mapping plant species in mixed grassland communities using close range imaging spectroscopyRemote Sensing of Environment, 201
(2019)
Keras: R interface to Keras
M. Alonzo, H. Andersen, D. Morton, B. Cook (2018)
Quantifying Boreal Forest Structure and Composition Using UAV Structure from MotionForests, 9
François Chollet (2016)
Xception: Deep Learning with Depthwise Separable Convolutions2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Loïc Siéler, C. Tanougast, A. Bouridane (2010)
A scalable and embedded FPGA architecture for efficient computation of grey level co-occurrence matrices and Haralick textures featuresMicroprocess. Microsystems, 34
R. Haralick (1979)
Statistical and structural approaches to textureProceedings of the IEEE, 67
P. Zarco-Tejada, M. Guillén-Climent, R. Hernández-Clemente, A. Catalina, M. González, Pedro Martín (2013)
Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)Agricultural and Forest Meteorology, 171
R. Parfitt, D. Ross, D. Coomes, S. Richardson, M. Smale, R. Dahlgren (2005)
N and P in New Zealand Soil Chronosequences and Relationships with Foliar N and PBiogeochemistry, 75
(2016)
Deep learning for computational biology
P. Hsieh, Lou‐Chuang Lee, Nai-Yu Chen (2001)
Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensingIEEE Trans. Geosci. Remote. Sens., 39
Liangpei Zhang, Xin Huang, B. Huang, Pingxiang Li (2006)
A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imageryIEEE Transactions on Geoscience and Remote Sensing, 44
A. Fritz, T. Kattenborn, B. Koch (2013)
UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS – TREE STEM MAPPING IN OPEN STANDS IN COMPARISON TO TERRESTRIAL LASER SCANNER POINT CLOUDSISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
G. Foody, N. Campbell, N. Trodd, T. Wood (1992)
Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classificationPhotogrammetric Engineering and Remote Sensing, 58
Hoo-Chang Shin, H. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao, D. Mollura, R. Summers (2016)
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer LearningIeee Transactions on Medical Imaging, 35
Mostafa Mehdipour-Ghazi, B. Yanikoglu, E. Aptoula (2017)
Plant identification using deep neural networks via optimization of transfer learning parametersNeurocomputing, 235
E. Husson, O. Hagner, F. Ecke (2014)
Unmanned aircraft systems help to map aquatic vegetationApplied Vegetation Science, 17
N. Brodu, D. Lague (2011)
3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphologyArXiv, abs/1107.0550
L. Wallace, A. Lucieer, C. Watson, D. Turner (2012)
Development of a UAV-LiDAR System with Application to Forest InventoryRemote. Sens., 4
S. Schmidtlein, Julia Sassin (2004)
Mapping of continuous floristic gradients in grasslands using hyperspectral imageryRemote Sensing of Environment, 92
Jana Wäldchen, Patrick Mäder (2017)
Plant Species Identification Using Computer Vision Techniques: A Systematic Literature ReviewArchives of Computational Methods in Engineering, 25
R. Clapp (1995)
The Unnatural History of the Monterey PineGeographical Review, 85
J. Eichel (2019)
Geomorphology of proglacial systems
(2014)
Deep neural networks rival the a 2020 The Authors
J. Eichel (2018)
Vegetation Succession and Biogeomorphic Interactions in Glacier ForelandsGeography of the Physical Environment
R. Fraser, I. Olthof, T. Lantz, C. Schmitt (2016)
UAV photogrammetry for mapping vegetation in the low-Arctic, 2
Paul Aplin (2006)
On scales and dynamics in observing the environmentInternational Journal of Remote Sensing, 27
R. Lunetta, R. Congalton, L. Fenstermaker, J. Jensen, K. McGwire, L. Tinney (1991)
Remote sensing and Geographic Information System data integration: error sources and research issuesPhotogrammetric Engineering and Remote Sensing, 57
S. Jégou, M. Drozdzal, David Vázquez, Adriana Romero, Yoshua Bengio (2016)
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
S. Winkler, C. Lambiel (2018)
Age constraints of rock glaciers in the Southern Alps/New Zealand – Exploring their palaeoclimatic potentialThe Holocene, 28
R. Valbuena, F. Mauro, R. Rodríguez-Solano, J. Manzanera (2010)
Accuracy and precision of GPS receivers under forest canopies in a mountainous environment.Spanish Journal of Agricultural Research, 8
(2017)
Mask rcnnIn Proceedings of the IEEE international conference on computer vision (pp
Jinyan Tian, Le Wang, Xiaojuan Li, H. Gong, Chen Shi, Ruofei Zhong, Xiaomeng Liu (2017)
Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forestInt. J. Appl. Earth Obs. Geoinformation, 61
J. Müllerová, J. Pergl, P. Pyšek (2013)
Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)Int. J. Appl. Earth Obs. Geoinformation, 25
R. Bustamante, J. Simonetti (2005)
Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forestBiological Invasions, 7
Alberto Garcia-Garcia, Francisco Gomez-Donoso, J. Rodríguez, Sergio Orts, M. Cazorla, J. López (2016)
PointNet: A 3D Convolutional Neural Network for real-time object class recognition2016 International Joint Conference on Neural Networks (IJCNN)
Stephan Getzin, R. Nuske, K. Wiegand (2014)
Using Unmanned Aerial Vehicles (UAV) to Quantify Spatial Gap Patterns in ForestsRemote. Sens., 6
Max Schwarz, Hannes Schulz, Sven Behnke (2015)
RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features2015 IEEE International Conference on Robotics and Automation (ICRA)
J. Müllerová, J. Bruña, T. Bartalos, Petr Dvořák, M. Vítková, P. Pyšek (2017)
Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion MonitoringFrontiers in Plant Science, 8
F. Chianucci, L. Disperati, D. Guzzi, D. Bianchini, V. Nardino, C. Lastri, Andrea Rindinella, P. Corona (2016)
Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAVInt. J. Appl. Earth Obs. Geoinformation, 47
P. Leitão, M. Schwieder, Florian Pötzschner, J. Pinto, A. Teixeira, F. Pedroni, Maryland Sanchez, C. Rogass, Sebastian Linden, M. Bustamante, P. Hostert (2018)
From sample to pixel: multi-scale remote sensing data for upscaling aboveground carbon data in heterogeneous landscapesEcosphere
B. Lu, Yuhong He (2017)
Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grasslandIsprs Journal of Photogrammetry and Remote Sensing, 128
I. Colomina, P. Molina (2014)
Unmanned aerial systems for photogrammetry and remote sensing: A reviewIsprs Journal of Photogrammetry and Remote Sensing, 92
Z. Malenovský, A. Lucieer, D. King, Johanna Turnbull, S. Robinson (2017)
Unmanned aircraft system advances health mapping of fragile polar vegetationMethods in Ecology and Evolution, 8
T. Sankey, Jonathon Donager, J. McVay, J. Sankey (2017)
UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USARemote Sensing of Environment, 195
T. Kattenborn, J. Hernández, Javier Lopatin, G. Kattenborn, F. Fassnacht (2018)
PILOT STUDY ON THE RETRIEVAL OF DBH AND DIAMETER DISTRIBUTION OF DECIDUOUS FOREST STANDS USING CAST SHADOWS IN UAV-BASED ORTHOMOSAICSISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jingjing Cao, Wanchun Leng, Kai Liu, Lin Liu, Zhi He, Yuanhui Zhu (2018)
Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface ModelsRemote. Sens., 10
D. Coomes, R. Allen, W. Bentley, L. Burrows, C. Canham, L. Fagan, D. Forsyth, Aurora Gaxiola‐Alcantar, R. Parfitt, W. Ruscoe, D. Wardle, D. Wilson, E. Wright (2005)
The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filteringJournal of Ecology, 93
Jonathan Lisein, A. Michez, H. Claessens, P. Lejeune (2015)
Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System ImageryPLoS ONE, 10
F. Wagner, Alber Sánchez, Y. Tarabalka, R. Lotte, M. Ferreira, M. Aidar, E. Gloor, O. Phillips, L. Aragão (2019)
Using the U‐net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution imagesRemote Sensing in Ecology and Conservation, 5
A. Michez, H. Piégay, L. Jonathan, H. Claessens, P. Lejeune (2016)
Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imageryInt. J. Appl. Earth Obs. Geoinformation, 44
Keiller Nogueira, O. Penatti, J. Santos (2016)
Towards better exploiting convolutional neural networks for remote sensing scene classificationPattern Recognit., 61
A. Joly, P. Bonnet, H. Goëau, Julien Barbe, Souheil Selmi, Julien Champ, Samuel Dufour-Kowalski, A. Affouard, Jennifer Carré, J. Molino, N. Boujemaa, D. Barthélémy (2015)
A look inside the Pl@ntNet experienceMultimedia Systems, 22
I. Vanha-Majamaa, M. Salemaa, S. Tuominen, K. Mikkola (2000)
Digitized photographs in vegetation analysis - a comparison of cover estimatesApplied Vegetation Science, 3
P. Zarco-Tejadaa, M. Guillén-Climenta, R. Hernández-Clementeb, A. Catalinac, M. Gonzálezc, P. Martínc (2013)
Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle ( UAV )
Javier Lopatin, Klara Dolos, T. Kattenborn, F. Fassnacht (2019)
How canopy shadow affects invasive plant species classification in high spatial resolution remote sensingRemote Sensing in Ecology and Conservation, 5
H. Kaartinen, J. Hyyppä, M. Vastaranta, A. Kukko, A. Jaakkola, Xiaowei Yu, Jiri Pyörälä, Xinlian Liang, Jingbin Liu, Yungsheng Wang, R. Kaijaluoto, T. Melkas, M. Holopainen, H. Hyyppä (2015)
Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest CanopiesForests, 6
Jana Wäldchen, Michael Rzanny, M. Seeland, Patrick Mäder (2018)
Automated plant species identification—Trends and future directionsPLoS Computational Biology, 14
T. Kattenborn, J. Eichel, F. Fassnacht (2019)
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imageryScientific Reports, 9
J. Luscier, W. Thompson, John Wilson, Bruce Gorham, L. Drăguţ (2006)
Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plotsFrontiers in Ecology and the Environment, 4
D. Rocchini, G. Foody, H. Nagendra, C. Ricotta, M. Anand, K. He, V. Amici, B. Kleinschmit, M. Förster, S. Schmidtlein, H. Feilhauer, A. Ghisla, M. Metz, M. Neteler (2013)
Uncertainty in ecosystem mapping by remote sensingComput. Geosci., 50
R. Team (2014)
R: A language and environment for statistical computing.MSOR connections, 1
Stephan Getzin, K. Wiegand, I. Schöning (2012)
Assessing biodiversity in forests using very high‐resolution images and unmanned aerial vehiclesMethods in Ecology and Evolution, 3
S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, Darko Stefanović (2016)
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image ClassificationComputational Intelligence and Neuroscience, 2016
Fan Hu, Gui-Song Xia, Jingwen Hu, Liangpei Zhang (2015)
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing ImageryRemote. Sens., 7
H. Riihimäki, M. Luoto, J. Heiskanen (2019)
Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite dataRemote Sensing of Environment
D. Panagiotidis, Azadeh Abdollahnejad, P. Surový, V. Chiteculo (2017)
Determining tree height and crown diameter from high-resolution UAV imageryInternational Journal of Remote Sensing, 38
Anne Gellally (1982)
Lichenometry as a relative-age dating method in Mount Cook National Park, New ZealandNew Zealand Journal of Botany, 20
O. Ronneberger (2017)
Invited Talk: U-Net Convolutional Networks for Biomedical Image Segmentation
H. Norambuena, S. Escobar, F. Rodríguez, N. Spencer (2000)
The biocontrol of gorse, Ulex europaeus, in Chile: a progress report.
Javier Lopatin, T. Kattenborn, M. Galleguillos, Jorge Pérez-Quezada, S. Schmidtlein (2019)
Using aboveground vegetation attributes as proxies for mapping peatland belowground carbon stocksRemote Sensing of Environment
C. Cadieu, Ha Hong, Daniel Yamins, Nicolas Pinto, Diego Ardila, E. Solomon, N. Majaj, J. DiCarlo (2014)
Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object RecognitionPLoS Computational Biology, 10
Bohao Huang, Kangkang Lu, N. Audebert, A. Khalel, Y. Tarabalka, Jordan Malof, Alexandre Boulch, B. Saux, L. Collins, Kyle Bradbury, S. Lefèvre, M. El-Saban (2018)
Large-Scale Semantic Classification: Outcome of the First Year of Inria Aerial Image Labeling BenchmarkIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
A. Krizhevsky, Ilya Sutskever, Geoffrey Hinton (2012)
ImageNet classification with deep convolutional neural networksCommunications of the ACM, 60
P. Culbert, V. Radeloff, V. St.-Louis, C. Flather, C. Rittenhouse, T. Albright, A. Pidgeon (2012)
Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image textureRemote Sensing of Environment, 118
Remote Sensing in Ecology and Conservation – Wiley
Published: Dec 1, 2020
Keywords: ; ; ; ; ; ; ;
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.