Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Greenberger, M. Horne, A. Zeilinger (2007)
Going Beyond Bell’s TheoremarXiv: Quantum Physics
Daniel Tiarks, Steffen Schmidt-Eberle, T. Stolz, G. Rempe, S. Dürr (2018)
A photon–photon quantum gate based on Rydberg interactionsNature Physics, 15
W. Zurek (2001)
Decoherence, einselection, and the quantum origins of the classicalReviews of Modern Physics, 75
M. Pompili, S. Hermans, S. Baier, H. Beukers, P. Humphreys, R. Schouten, R. Vermeulen, M. Tiggelman, Laura Martins, B. Dirkse, S. Wehner, R. Hanson (2021)
Realization of a multinode quantum network of remote solid-state qubitsScience, 372
J. Bourassa, R. Alexander, M. Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Matsuura, D. Su, B. Baragiola, S. Guha, G. Dauphinais, K. Sabapathy, N. Menicucci, Ish Dhand (2020)
Blueprint for a Scalable Photonic Fault-Tolerant Quantum ComputerQuantum, 5
P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, G. Milburn (2007)
Linear optical quantum computing with photonic qubitsReviews of Modern Physics, 79
H. Busche, P. Huillery, Simon Ball, T. Ilieva, Matthew Jones, C. Adams (2017)
Contactless nonlinear optics mediated by long-range Rydberg interactionsNature Physics, 13
Shuyu Zhou, Shanchao Zhang, Chang Liu, Jiefei Chen, J. Wen, M. Loy, G. Wong, S. Du (2012)
Optimal storage and retrieval of single-photon waveforms.Optics express, 20 22
Y. Wang, S. Shevate, T. Wintermantel, M. Morgado, G. Lochead, Shannon Whitlock (2019)
Preparation of hundreds of microscopic atomic ensembles in optical tweezer arraysnpj Quantum Information, 6
C. Bruzewicz, J. Chiaverini, R. McConnell, J. Sage (2019)
Trapped-ion quantum computing: Progress and challengesApplied Physics Reviews
D. Bouwmeester, Jian-Wei Pan, M. Daniell, H. Weinfurter, A. Zeilinger (1998)
Observation of three-photon Greenberger-Horne-Zeilinger entanglementPhysical Review Letters, 82
M. Schlosshauer (2003)
Decoherence, the measurement problem, and interpretations of quantum mechanicsReviews of Modern Physics, 76
M. Saffman (2017)
Quantum computing with neutral atomsNational Science Review, 6
S. M. Barnett (2009)
Quantum Information
Bo Jing, Xu-Jie Wang, Yong Yu, Peng-Fei Sun, Yan-Hu Jiang, Sheng-Jun Yang, Wen-Hao Jiang, Xi-Yu Luo, Jun Zhang, Xiao Jiang, Xiao-Hui Bao, Jian-Wei Pan (2018)
Hybrid entanglement of three quantum memories with three photons
J. Gambetta, J. Chow, M. Steffen (2015)
Building logical qubits in a superconducting quantum computing systemnpj Quantum Information, 3
D. Paredes-Barato, C. Adams (2013)
All-optical quantum information processing using Rydberg gates.Physical review letters, 112 4
Yue Jiang, Yefeng Mei, Yueyang Zou, Ying Zuo, S. Du (2019)
Intracavity cold atomic ensemble with high optical depth.The Review of scientific instruments, 90 1
R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel (2008)
Microscopic atom optics: from wires to an atom chipAdvances in Atomic Molecular and Optical Physics, 48
S. Du, Matthew Squires, L. Czaia, Dana Anderson, R. Saravanan, Victor Bright, Yutaka Imai, J. Reichel, Theodor Hänsch (2004)
Atom chip bose-einstein condensation in a portable vacuum cellInternationalQuantum Electronics Conference, 2004. (IQEC).
S. Harris (1991)
Electromagnetically Induced TransparencyQELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference
E. Urban, T. Johnson, T. Henage, L. Isenhower, D. Yavuz, Thomas Walker, M. Saffman (2008)
Observation of Rydberg blockade between two atomsNature Physics, 5
Y. Dudin, Lin Li, F. Bariani, A. Kuzmich (2012)
Observation of coherent many-body Rabi oscillationsNature Physics, 8
M. Fleischhauer, A. Imamoğlu, J. Marangos (2005)
Electromagnetically induced transparency : Optics in coherent mediaReviews of Modern Physics, 77
Stefanie Barz (2015)
Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experimentsJournal of Physics B: Atomic, Molecular and Optical Physics, 48
M. Anderson, J. Ensher, M. Matthews, C. Wieman, E. Cornell (1995)
Observation of Bose-Einstein Condensation in a Dilute Atomic VaporScience, 269
N. Gottschalk (2016)
Fundamentals Of Photonics
M. Khazali, K. Heshami, C. Simon (2014)
Photon-photon gate via the interaction between two collective Rydberg excitationsPhysical Review A, 91
Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, L. Peng, Yi-Han Luo, J. Qin, Dian Wu, X. Ding, Y. Hu, P. Hu, Xiaoyan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, L. Gan, Guangwen Yang, L. You, Zhen Wang, Li Li, Nai-Le Liu, Chaoyang Lu, Jian-Wei Pan (2020)
Quantum computational advantage using photonsScience, 370
(2013)
A Viewpoint on: Catch and Release of Microwave Photon States
A. Paszkiewicz, Tomasz Sobieszek (2008)
Quantum StatisticsIntroduction to Quantum Mechanics
K. Reim, J. Nunn, V. Lorenz, V. Lorenz, B. Sussman, B. Sussman, K. Lee, N. Langford, D. Jaksch, I. Walmsley (2009)
Towards high-speed optical quantum memoriesNature Photonics, 4
M. Saffman (2016)
Quantum computing with atomic qubits and Rydberg interactions: progress and challengesJournal of Physics B: Atomic, Molecular and Optical Physics, 49
Young-Wook Cho, G. Campbell, J. Everett, J. Bernu, D. Higginbottom, Ming-Ming Cao, J. Geng, N. Robins, P. Lam, B. Buchler (2016)
Highly efficient optical quantum memory with long coherence time in cold atomsarXiv: Quantum Physics
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier (2008)
Observation of collective excitation of two individual atoms in the Rydberg blockade regimeNature Physics, 5
K. Reim, P. Michelberger, K. Lee, J. Nunn, N. Langford, I. Walmsley (2010)
Single-photon-level quantum memory at room temperature.Physical review letters, 107 5
Shanchao Zhang, Jiefei Chen, Chang Liu, Shuyu Zhou, M. Loy, G. Wong, S. Du (2012)
A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.The Review of scientific instruments, 83 7
M. Saffman, Thomas Walker, K. Mølmer (2009)
Quantum information with Rydberg atomsReviews of Modern Physics, 82
L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. Johnson, Thomas Walker, M. Saffman (2009)
Demonstration of a neutral atom controlled-NOT quantum gate.Physical review letters, 104 1
C. P. Williams (2011)
Explorations in Quantum Computing
P. Mironowicz (2022)
Quantum security and theory of decoherenceNew Journal of Physics, 24
Yunfei Wang, Jian-Feng Li, Shanchao Zhang, Keyu Su, Yiru Zhou, K. Liao, S. Du, Hui Yan, Shi-Liang Zhu (2019)
Efficient quantum memory for single-photon polarization qubitsNature Photonics, 13
Wenchao Xu, Aditya Venkatramani, Sergio Cantu, Tamara Šumarac, V. Klüsener, M. Lukin, V. Vuleti'c (2021)
Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles.Physical review letters, 127 5
M. Hedges, J. Longdell, Yongmin Li, M. Sellars (2010)
Efficient quantum memory for lightNature, 465
E. Knill, R. Laflamme, G. Milburn (2001)
A scheme for efficient quantum computation with linear opticsNature, 409
M. Lukin, M. Fleischhauer, R. Côté, Luming Duan, D. Jaksch, J. Cirac, P. Zoller (2000)
Dipole blockade and quantum information processing in mesoscopic atomic ensembles.Physical review letters, 87 3
Chengyuan Wang, Ya Yu, Yun Chen, M. Cao, Jinwen Wang, Xin Yang, Shuwei Qiu, Dong Wei, Hong Gao, Fuli Li (2020)
Efficient quantum memory of orbital angular momentum qubits in cold atomsQuantum Science & Technology, 6
Y. Mei, Y. Li, H. Nguyen, P. Berman, A. Kuzmich (2022)
Trapped Alkali-Metal Rydberg Qubit.Physical review letters, 128 12
R. Bera (2020)
Quantum GatesUndergraduate Lecture Notes in Physics
(2007)
Milburn
The promise of universal quantum computing requires scalable single‐ and inter‐qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate operations. Alternatively, photons are well decoupled from the environment and have advantages of speed and timing for quantum computing. Photonic systems have already demonstrated capability for solving specific intractable problems like Boson sampling, but face challenges for practically scalable universal quantum computing solutions because it is extremely difficult for a single photon to “talk” to another deterministically. Here, a universal distributed quantum computing scheme based on photons and atomic‐ensemble‐based quantum memories is proposed. Taking the established photonic advantages, two‐qubit nonlinear interaction is mediated by converting photonic qubits into quantum memory states and employing Rydberg blockade for the controlled gate operation. Spatial and temporal scalability of this scheme is demonstrated further. These results show photon‐atom network hybrid approach can be a potential solution to universal distributed quantum computing.
Advanced Quantum Technologies – Wiley
Published: Jun 1, 2023
Keywords: quantum computing; quantum gate; quantum memory
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.