Access the full text.
Sign up today, get DeepDyve free for 14 days.
The quantum synchronization between a pair of two‐level systems inside two coupled cavities is studied. By using a digital–analog decomposition of the master equation that rules the system dynamics, it is shown that this approach leads to quantum synchronization between both two‐level systems. Moreover, in this digital–analog block decomposition, the fundamental elements of a quantum machine learning protocol can be identified, in which the agent and the environment (learning units) interact through a mediating system, namely, the register. If the algorithm can be additionally equipped with a classical feedback mechanism, which consists of projective measurements in the register, reinitialization of the register state, and local conditional operations on the agent and environment subspace, a powerful and flexible quantum machine learning protocol emerges. Indeed, numerical simulations show that this protocol enhances the synchronization process, even when every subsystem experiences different loss/decoherence mechanisms, and gives the flexibility to choose the synchronization state. Finally, an implementation is proposed, based on current technologies in superconducting circuits.
Advanced Quantum Technologies – Wiley
Published: Aug 1, 2019
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.