Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Oren (2006)
The Order Haloanaerobiales
R. Castenholz (1988)
[5] Thermophilic cyanobacteria: Special problemsMethods in Enzymology, 167
S. Hansmann, William Martin (2000)
Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis.International journal of systematic and evolutionary microbiology, 50 Pt 4
S. Fitz-Gibbon, C. House (1999)
Whole genome-based phylogenetic analysis of free-living microorganisms.Nucleic acids research, 27 21
D. Sumner, J. Grotzinger (1996)
Herringbone Calcite: Petrography and Environmental SignificanceJournal of Sedimentary Research, 66
L. Kump, J. Kasting, M. Barley (2001)
Rise of atmospheric oxygen and the “upside‐down” Archean mantleGeochemistry, 2
J. Grotzinger, Andrew Knoll (1999)
Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?Annual review of earth and planetary sciences, 27
H. Thode, A. Goodwin (1983)
Further Sulfur and Carbon Isotope Studies of Late Archean Iron-Formations of the Canadian Shield and the Rise of Sulfate Reducing BacteriaPrecambrian Research, 20
J. Overmann (2006)
The Family Chlorobiaceae
A. Goodwin, J. Monster, H. Thode (1976)
Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian lifeEconomic Geology, 71
E. Corre, A. Reysenbach, D. Prieur (2001)
Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge.FEMS microbiology letters, 205 2
T. Cavalier-smith (2002)
The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.International journal of systematic and evolutionary microbiology, 52 Pt 1
Martina Merz-Preiß (2000)
Calcification in CyanobacteriaChemInform, 31
D. Marais, H. Strauss, R. Summons, J. Hayes (1992)
Carbon isotope evidence for the stepwise oxidation of the Proterozoic environmentNature, 359
M. Cummings (2004)
PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)]Dictionary of Bioinformatics and Computational Biology
V. Orphan, C. House, K. Hinrichs, K. McKeegan, E. Delong (2002)
Multiple archaeal groups mediate methane oxidation in anoxic cold seep sedimentsProceedings of the National Academy of Sciences of the United States of America, 99
E. Dimroth, M. Kimberley (1976)
Precambrian atmospheric oxygen: evidence in the sedimentary distributions of carbon, sulfur, uranium, and ironCanadian Journal of Earth Sciences, 13
J. Eisen (2000)
Horizontal gene transfer among microbial genomes: new insights from complete genome analysis.Current opinion in genetics & development, 10 6
H. Talbot, D. Watson, J. Murrell, J. Carter, P. Farrimond (2001)
Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry.Journal of chromatography. A, 921 2
M. Schidlowski (2001)
Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a conceptPrecambrian Research, 106
Vanessa Madrid, G. Taylor, M. Scranton, A. Chistoserdov (2001)
Phylogenetic Diversity of Bacterial and Archaeal Communities in the Anoxic Zone of the Cariaco BasinApplied and Environmental Microbiology, 67
V. Brüchert, C. Knoblauch, B. Jørgensen (2001)
Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sedimentsGeochimica et Cosmochimica Acta, 65
(1992)
Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends
J. Pasteris, B. Wopenka (2003)
Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life.Astrobiology, 3 4
C. Vilchèze, P. Llopiz, S. Neunlist, K. Poralla, M. Rohmer (1994)
Prokaryotic triterpenoids: new hopanoids from the nitrogen-fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilisMicrobiology, 140
A. Anbar, A. Knoll (2002)
Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?Science, 297
Kasting Kasting (1993)
Earth's earliest atmosphereScience, 259
Kohl Kohl, Gloe Gloe, Reichenbach Reichenbach (1983)
Steroids from the myxobacterium Nannocystis exedensJournal of General Microbiology, 129
J. Ruiz, A. Carnerup, A. Christy, N. Welham, S. Hyde (2002)
Morphology: an ambiguous indicator of biogenicity.Astrobiology, 2 3
A. Roger (1999)
Reconstructing Early Events in Eukaryotic EvolutionThe American Naturalist, 154
H. Cypionka, A. Smock, M. Böttcher (1998)
A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricansFems Microbiology Letters, 166
C. Bjerrum, D. Canfield (2002)
Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxidesNature, 417
Kevin Finneran, Heather Forbush, C. Vanpraagh, D. Lovley (2002)
Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds.International journal of systematic and evolutionary microbiology, 52 Pt 6
V. Emelyanov (2001)
Evolutionary relationship of Rickettsiae and mitochondriaFEBS Letters, 501
Golubic Golubic, Hofmann Hofmann (1976)
Comparison of Holocene and mid?Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic mats: cell division and degradationJournal of Paleontology, 50
F. Widdel, T. Hansen, A. Balows, H. Trüper, M. Dworkin, W. Harder, K. Schleifer (1992)
The dissimilatory sulfate- and sulfur-reducing bacteria.
E. Cameron, K. Hattori (1987)
Archean sulphur cycle: Evidence from sulphate minerals and isotopically fractionated sulphides in superior province, CanadaChemical Geology: Isotope Geoscience Section, 65
M. Bolli, R. Micura, S. Pitsch, A. Eschenmoser, M. Renz, R. Lohrmann, L. Orgel (1999)
Phylogenetic Classification and the Universal Tree
Rohmer Rohmer, Bouvier‐Nave Bouvier‐Nave, Ourisoon Ourisoon (1984)
Distribution of hopanoid triterpenes in prokaryotesJournal of General Microbiology, 130
T. Kakegawa, Yukio Kasahara, Ken-ichiro Hayashi, H. Ohmoto (2000)
Sulfur and carbon isotope analyses of the 2.7 Ga Jeerinah Formation, Fortescue Group, AustraliaGeochemical Journal, 34
Yanan Shen, D. Canfield, A. Knoll (2002)
Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern AustraliaAmerican Journal of Science, 302
J. Grotzinger, J. Kasting (1993)
New Constraints on Precambrian Ocean CompositionThe Journal of Geology, 101
M. Zundel, M. Rohmer (1985)
Prokaryotic triterpenoids. 1. 3 beta-Methylhopanoids from Acetobacter species and Methylococcus capsulatus.European journal of biochemistry, 150 1
R. Reid, P. Visscher, A. Decho, John Stolz, B. Bebout, C. Dupraz, Ian Macintyre, H. Paerl, J. Pinckney, L. Prufert-Bebout, T. Steppe, D. desmarais (2000)
The role of microbes in accretion, lamination and early lithification of modern marine stromatolitesNature, 406
Yumiko Watanabe, H. Naraoka, D. Wronkiewicz, K. Condie, H. Ohmoto (1997)
Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South AfricaGeochimica et Cosmochimica Acta, 61
C. House, J. Schopf, K. Stetter (2003)
Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotesOrganic Geochemistry, 34
William Schopf (1993)
Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of LifeScience, 260
P. Bisseret, M. Zundel, M. Rohmer (1985)
2. 2β-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoidsFEBS Journal, 150
W. Altermann, J. Schopf (1995)
Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications.Precambrian research, 75 1-2
N. Grassineau, E. Nisbet, M. Bickle, C. Fowler, D. Lowry, D. Mattey, P. Abell, A. Martin (2001)
Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million–year–old rocks of the Belingwe Belt, ZimbabweProceedings of the Royal Society of London. Series B: Biological Sciences, 268
J. Eisen (1995)
The RecA protein as a model molecule for molecular systematic studies of bacteria: Comparison of trees of RecAs and 16S rRNAs from the same speciesJournal of Molecular Evolution, 41
J. Schopf, BM Packer (1987)
Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia.Science, 237
D. Wright, W. Altermann (2000)
Microfacies development in Late Archaean stromatolites and oolites of the Ghaap Group of South AfricaGeological Society, London, Special Publications, 178
Henry Henry, Devereux Devereux, Maki Maki, Gilmour Gilmour, Woese Woese, Mandelco Mandelco, Schauder Schauder, Remsen Remsen, Mitchell Mitchell (1994)
Characterization of a new thermophilic sulfate?reducing bacterium ? Thermodesulfovibrio yellowstonii , gen. nov. & sp. nov. ? its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the Bacterial domainArchives of Microbiology, 161
J. Cantera, H. Kawasaki, T. Seki (2002)
Farnesyl diphosphate synthase gene of three phototrophic bacteria and its use as a phylogenetic marker.International journal of systematic and evolutionary microbiology, 52 Pt 6
C. Eastoe, M. Gustin (1996)
Volcanogenic massive sulfide deposits and anoxia in the Phanerozoic oceansOre Geology Reviews, 10
S. Golubić, H. Hofmann (1976)
COMPARISON OF HOLOCENE AND MID-PRECAMBRIAN ENTOPHYSALIDACEAE (CYANOPHYTA) IN
T. Kunisawa (2001)
Gene arrangements and phylogeny in the class Proteobacteria.Journal of theoretical biology, 213 1
H. Ohmoto (1996)
Formation of volcanogenic massive sulfide deposits: The Kuroko perspectiveOre Geology Reviews, 10
D. Lamb, D. Kelly, N. Manning, S. Kelly (1998)
A sterol biosynthetic pathway in MycobacteriumFEBS Letters, 437
H. Ohmoto (1996)
Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biotaGeology, 24 12
Cvejic Cvejic, Bodrossy Bodrossy, Kovács Kovács, Rohmer Rohmer (2000a)
Bacterial triterpenoids of the methanotrophic bacteria Methylocaldum spp. Phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyolFEMS Microbiology Letters, 182
H. Schulz, T. Brinkhoff, T. Ferdelman, M. Mariné, A. Teske, B. Jørgensen (1999)
Dense populations of a giant sulfur bacterium in Namibian shelf sediments.Science, 284 5413
A. Fischer (1965)
FOSSILS, EARLY LIFE, AND ATMOSPHERIC HISTORY.Proceedings of the National Academy of Sciences of the United States of America, 53
N. Pace (1997)
A molecular view of microbial diversity and the biosphere.Science, 276 5313
J. Huelsenbeck, D. Hillis, R. Nielsen (1996)
A Likelihood-Ratio Test of MonophylySystematic Biology, 45
S. Golubić, V. Sergeev, A. Knoll (1995)
Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria.Lethaia, 28
By Bouvier, M. Rohmer, P. Benveniste, Guy OURISSONt (2005)
A8('4)-Steroids in the Bacterium Methylococcus capsulatus
(1992)
Other geological indicators
H. Holland (2002)
Volcanic gases, black smokers, and the great oxidation eventGeochimica et Cosmochimica Acta, 66
R. Rabus, T. Hansen, F. Widdel (2006)
Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes
(2003)
Images of the Earth’s earliest fossils?; discussion and reply
U. Wortmann, S. Bernasconi, M. Böttcher (2001)
Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reductionGeology, 29
S. Awramik, L. Margulis, E. Barghoorn (1976)
Chapter 4.4 Evolutionary Processes in the Formation of StromatolitesDevelopments in sedimentology, 20
R. Rye, H. Holland (1998)
Paleosols and the evolution of atmospheric oxygen: a critical review.American journal of science, 298 8
D. Twist, E. Cheney (1986)
Evidence for the transition to an oxygen-rich atmosphere in the Rooiberg Group, South Africa — A notePrecambrian Research, 33
A. Tomitani, A. Knoll, C. Cavanaugh, T. Ohno (2006)
The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives.Proceedings of the National Academy of Sciences of the United States of America, 103 14
S. Teichmann, G. Mitchison (1999)
Is There a Phylogenetic Signal in Prokaryote Proteins?Journal of Molecular Evolution, 49
E. Angert, K. Clements, N. Pace (1993)
The largest bacteriumNature, 362
T. Ishida, M. Watanabe, J. Sugiyama, A. Yokota (2001)
Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis.FEMS microbiology letters, 201 1
(1992)
The carbon - isotope record
M. Brasier, O. Green, A. Jephcoat, A. Kleppe, M. Kranendonk, J. Lindsay, A. Steele, N. Grassineau (2002)
Questioning the evidence for Earth's oldest fossilsNature, 416
P. Bond, Steven Smriga, J. Banfield (2000)
Phylogeny of Microorganisms Populating a Thick, Subaerial, Predominantly Lithotrophic Biofilm at an Extreme Acid Mine Drainage SiteApplied and Environmental Microbiology, 66
J. Grotzinger, D. Rothman (1996)
An abiotic model for stromatolite morphogenesisNature, 383
C. Lécuyer, Y. Ricard (1999)
Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphereEarth and Planetary Science Letters, 165
M. Rappé, S. Giovannoni (2003)
The uncultured microbial majority.Annual review of microbiology, 57
L. Feng, J. Donaldson, H. Holland (2000)
Alteration Rinds on Glacial Diamictite Clasts in the Gowganda Formation: Possible Indicators of Low Atmospheric Oxygen ca. 2.3 GaInternational Geology Review, 42
D. Moreira, R. Amils (1997)
Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov.International journal of systematic bacteriology, 47 2
J. Pasteris, B. Wopenka (2002)
Laser–Raman spectroscopy (Communication arising): Images of the Earth's earliest fossils?Nature, 420
D. Gevertz, A. Telang, G. Voordouw, G. Jenneman (2000)
Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field BrineApplied and Environmental Microbiology, 66
H. Harmsen, Bernardina Kuijk, C. Plugge, A. Akkermans, W. Vos, Alfons Stams (1998)
Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium.International journal of systematic bacteriology, 48 Pt 4
E. Henry, R. Devereux, J. Maki, C. Gilmour, C. Woese, L. Mandelco, R. Schauder, C. Remsen, R. Mitchell (2004)
Characterization of a new thermophilic sulfate-reducing bacteriumArchives of Microbiology, 161
Shen Shen, Knoll Knoll, Walter Walter (2003)
Evidence for low sulphate and anoxia in a mid?Proterozoic basinNature, 423
F. Rainey, T. Zhilina, E. Boulygina, E. Stackebrandt, T. Tourova, G. Zavarzin (1995)
The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level.Anaerobe, 1 4
B. Jørgensen (1990)
A thiosulfate shunt in the sulfur cycle of marine sediments.Science, 249 4965
Fischer Fischer (1965)
Fossils, early life, and atmospheric historyProceedings of the National Academy of Sciences USA, 53
D. Canfield, R. Raiswell (1999)
The evolution of the sulfur cycleAmerican Journal of Science, 299
S. Rosa-Putra, R. Nalin, A. Domenach, M. Rohmer (2001)
Novel hopanoids from Frankia spp. and related soil bacteria. Squalene cyclization and significance of geological biomarkers revisited.European journal of biochemistry, 268 15
H. Castro, N. Williams, A. Ogram (2000)
Phylogeny of sulfate‐reducing bacteriaFEMS Microbiology Ecology, 31
I. Kaplan, S. Rittenberg (1964)
MICROBIOLOGICAL FRACTIONATION OF SULPHUR ISOTOPES.Journal of general microbiology, 34
Joseph Covert, M. Moran (2001)
Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbonAquatic Microbial Ecology, 25
C. Kirby, J. Brady (1998)
Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactorApplied Geochemistry, 13
J. Rivière, K. Schmidt (1981)
Morphologically Conspicuous Sulfur-Oxidizing Eubacteria
Y. Wolf, I. Rogozin, N. Grishin, R. Tatusov, E. Koonin (2001)
Genome trees constructed using five different approaches suggest new major bacterial cladesBMC Evolutionary Biology, 1
W. Hennig (2002)
Phylogenetic Systematics
L. Seong-Joo, S. Golubić (2007)
Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications.Lethaia, 31 3
D. Marais (1997)
Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic EonOrganic Geochemistry, 27
(2004)
Phylogeny of the bacterial domain : using compartmentalization to better resolve ancient divergences in the tree of life
M. Klein, Michael Friedrich, A. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L. Blackall, D. Stahl, M. Wagner (2001)
Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing ProkaryotesJournal of Bacteriology, 183
Doolittle Wf (1999)
Phylogenetic Classification and the Universal TreeScience, 284
S. Mojzsis, C. Coath, J. Greenwood, K. McKeegan, T. Harrison (2003)
Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysisGeochimica et Cosmochimica Acta, 67
E. Kannenberg, K. Poralla (1999)
Hopanoid Biosynthesis and Function in BacteriaNaturwissenschaften, 86
R. Riding (1998)
Late Palaeoproterozoic (∼1800–1600Ma) stromatolites, Cuddapah Basin, southern India: cyanobacterial or other bacterial microfabrics?Precambrian Research, 92
H. Cypionka, A. Smock, M. Böttcher (1998)
Research letterA combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricansFems Microbiology Letters, 166
K. Habicht, D. Canfield (1996)
Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycleNature, 382
Yanan Shen, A. Knoll, M. Walter (2003)
Evidence for low sulphate and anoxia in a mid-Proterozoic marine basinNature, 423
Heide Schulz, Bo Jørgensen (2001)
Big bacteria.Annual review of microbiology, 55
(1983)
Archean stromatolites: evidence of the Earth’s earliest benthos. In Earth’s Earliest Biosphere (ed. Schopf JW)
C. House, S. Fitz-Gibbon (2002)
Using Homolog Groups to Create a Whole-Genomic Tree of Free-Living Organisms: An UpdateJournal of Molecular Evolution, 54
J. Raymond, O. Zhaxybayeva, J. Gogarten, Sveta Gerdes, Robert Blankenship (2002)
Whole-Genome Analysis of Photosynthetic ProkaryotesScience, 298
B. Rasmussen, R. Buick (1999)
Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, AustraliaGeology, 27
P. Bouvier, M. Rohmer, P. Benveniste, G. Ourisson (1976)
Delta8(14)-steroids in the bacterium Methylococcus capsulatus.The Biochemical journal, 159 2
H. Strauss (1997)
The isotopic composition of sedimentary sulfur through timePalaeogeography, Palaeoclimatology, Palaeoecology, 132
J. Schopf (2000)
The Fossil Record: Tracing the Roots of the Cyanobacterial Lineage
K. Kersters, P. Vos, M. Gillis, J. Swings, P. Vandamme, E. Stackebrandt, M. Dworkin, S. Falkow, E. Rosenberg, K. Schleifer (2004)
Introduction to the Proteobacteria
M. Seemann, P. Bisseret, J. Tritz, A. Hooper, M. Rohmer (1999)
Novel bacterial triterpenoids of the hopane series from Nitrosomonas europaea and their significance for the formation of the C35 bacteriohopane skeletonTetrahedron Letters, 40
M. Rohmer, P. Bouvier-Navé, G. Ourisson (1984)
Distribution of Hopanoid Triterpenes in ProkaryotesMicrobiology, 130
K. Habicht, D. Canfield, J. Rethmeier (1998)
Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfiteGeochimica et Cosmochimica Acta, 62
Robert Blankenship (2001)
Molecular evidence for the evolution of photosynthesis.Trends in plant science, 6 1
Yanan Shen, R. Buick, D. Canfield (2001)
Isotopic evidence for microbial sulphate reduction in the early Archaean eraNature, 410
D. Canfield, K. Habicht, B. Thamdrup (2000)
The Archean sulfur cycle and the early history of atmospheric oxygen.Science, 288 5466
J. Cvejić, L. Bodrossy, L. Bodrossy, K. Kovács, M. Rohmer (2000)
Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp.: phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol.FEMS microbiology letters, 182 2
M. Friedrich (2002)
Phylogenetic Analysis Reveals Multiple Lateral Transfers of Adenosine-5′-Phosphosulfate Reductase Genes among Sulfate-Reducing MicroorganismsJournal of Bacteriology, 184
H. Strauss (2003)
Sulphur isotopes and the early Archaean sulphur cyclePrecambrian Research, 126
J. Brocks, G. Logan, R. Buick, R. Summons (1999)
Archean molecular fossils and the early rise of eukaryotes.Science, 285 5430
V. Melezhik, A. Fallick, V. Makarikhin, V. Lyubtsov (1997)
Links between Palaeoproterozoic palaeogeography and rise and decline of stromatolites: Fennoscandian ShieldPrecambrian Research, 82
(1985)
Sulphur isotope abundances in sedimentary rocks, relevance to the evolution of the Precambrian atmosphere
Y. Cohen, B. Jørgensen, N. Revsbech, R. Poplawski (1986)
Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among CyanobacteriaApplied and Environmental Microbiology, 51
S. Ono, J. Eigenbrode, A. Pavlov, P. Kharecha, D. Rumble, J. Kasting, K. Freeman (2003)
New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, AustraliaEarth and Planetary Science Letters, 213
J. Cvejić, S. Putra, A. El-beltagy, R. Hattori, T. Hattori, M. Rohmer (2000)
Bacterial triterpenoids of the hopane series as biomarkers for the chemotaxonomy of Burkholderia, Pseudomonas and Ralstonia spp.FEMS microbiology letters, 183 2
K. Takai, F. Inagaki, S. Nakagawa, H. Hirayama, T. Nunoura, Y. Sako, K. Nealson, K. Horikoshi (2003)
Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fieldsFems Microbiology Letters, 218
Rosa‐Putra Rosa‐Putra, Nalin Nalin, Domenach Domenach, Rohmer Rohmer (2001)
Novel hopanoids from Frankia spp. and related soil bacteriaEuropean Journal of Biochemistry, 268
J. Xiong, W. Fischer, Kazuhito Inoue, M. Nakahara, C. Bauer (2000)
Molecular evidence for the early evolution of photosynthesis.Science, 289 5485
W. Kohl, A. Gloe, H. Reichenbach (1983)
Steroids from the Myxobacterium Nannocystis exedensMicrobiology, 129
E. Cameron (1982)
Sulphate and sulphate reduction in early Precambrian oceansNature, 296
Kasting Kasting (2001)
The rise of atmospheric oxygenScience, 293
Orphan Orphan, House House, Hinrichs Hinrichs, McKeegan McKeegan, Delong Delong (2002)
Multiple archaeal groups mediate methane oxidation in anoxic cold seep sedimentsProceedings of the National Academy of Sciences, USA, 99
P. Bisseret, M. Zundel, M. Rohmer (1985)
Prokaryotic triterpenoids. 2. 2 beta-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids.European journal of biochemistry, 150 1
K. Zahnle (2006)
Earth's Earliest AtmosphereElements, 2
R. Summons, L. Jahnke, J. Hope, G. Logan (1999)
2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesisNature, 400
H. Ohmoto, T. Kakegawa, D. Lowe (1993)
3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.Science, 262
F. Tenover, C. Fennell (1992)
The Genera Campylobacter and Helicobacter
(1996)
Sequence Alignment Editor Se-Al, v2.0a9
K. Towe (2000)
The Archean Atmosphere and Sedimentary SulfidesScience, 289
K. Hattori, H. Krouse, F. Campbell (1983)
The Start of Sulfur Oxidation in Continental Environments: About 2.2 x 109 Years AgoScience, 221
D. Sumner, J. Grotzinger (1996)
Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?Geology, 24 2
(2002)
Microbial life at high temperatures and relationships through deep time
Canfield Canfield, Habicht Habicht, Thamdrup Thamdrup (2000)
The Archean sulfur cycle and the early history of atmospheric oxygen, ResponseScience, 288
A. Pavlov, J. Kasting (2002)
Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.Astrobiology, 2 1
C. Brochier, E. Bapteste, D. Moreira, H. Philippe (2002)
Eubacterial phylogeny based on translational apparatus proteins.Trends in genetics : TIG, 18 1
J. García‐Ruiz (2000)
Geochemical Scenarios for the Precipitation of Biomimetic Inorganic Carbonates
James Brown, C. Douady, Michael Italia, William Marshall, M. Stanhope (2001)
Universal trees based on large combined protein sequence data setsNature Genetics, 28
J. Farquhar, Huiming Bao, M. Thiemens (2000)
Atmospheric influence of Earth's earliest sulfur cycleScience, 289 5480
H. Ohmoto, R. Felder (1987)
Bacterial activity in the warmer, sulphate-bearing, Archaean oceansNature, 328
J. Kasting, D. Eggler, S. Raeburn (1993)
Mantle Redox Evolution and the Oxidation State of the Archean AtmosphereThe Journal of Geology, 101
J. Detmers, V. Brüchert, K. Habicht, J. Kuever (2001)
Diversity of Sulfur Isotope Fractionations by Sulfate-Reducing ProkaryotesApplied and Environmental Microbiology, 67
K. Habicht, M. Gade, B. Thamdrup, P. Berg, D. Canfield (2002)
Calibration of Sulfate Levels in the Archean OceanScience, 298
C. Woese (1987)
Bacterial evolutionMicrobiological Reviews, 51
D. Nelson, C. Wirsen, H. Jannasch (1989)
Characterization of Large, Autotrophic Beggiatoa spp. Abundant at Hydrothermal Vents of the Guaymas BasinApplied and Environmental Microbiology, 55
JF Kasting (1987)
Earth's early atmosphereScience, 259
J. Karhu, H. Holland (1996)
Carbon isotopes and the rise of atmospheric oxygenGeology, 24
K. Mori, Hongik Kim, T. Kakegawa, S. Hanada (2003)
A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot springExtremophiles, 7
H. Hofmann (2000)
Archean Stromatolites as Microbial Archives
G. Ourisson, M. Rohmer, K. Poralla (1987)
Prokaryotic hopanoids and other polyterpenoid sterol surrogates.Annual review of microbiology, 41
(2003)
The large scale topology of the tree of life
J. Gamieldien, A. Ptitsyn, Winston Hide (2002)
Eukaryotic genes in Mycobacterium tuberculosis could have a role in pathogenesis and immunomodulation.Trends in genetics : TIG, 18 1
D. Canfield, B. Thamdrup (1994)
The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur.Science, 266
M. Schidlowski (1988)
A 3,800-million-year isotopic record of life from carbon in sedimentary rocksNature, 333
E. Corre, A. Reysenbach, D. Prieur (2001)
ɛ-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic RidgeFems Microbiology Letters, 205
A. Fischer (1965)
N.A.S. Symposium on the Evolution of the Earth's Atmosphere: FOSSILS, EARLY LIFE, AND ATMOSPHERIC HISTORYProceedings of the National Academy of Sciences of the United States of America, 53
ABSTRACT Until recently, the deep‐branching relationships in the bacterial domain have been unresolved. A new phylogenetic approach (termed compartmentalization) was able to resolve these deep‐branching relationships successfully by using a large number of genes from whole genome sequences and by reducing long branch attraction artefacts. This new, well‐resolved phylogenetic tree reveals the evolutionary relationships between diverse bacterial groups that leave important traces in the geological record. It shows that mesophilic sulphate reducers originated before the Cyanobacteria, followed by the origination of sulphur‐ and pyrite‐oxidizing bacteria after oxygen became available in the biosphere. This evolutionary pattern mirrors a similar pattern in the Palaeoproterozoic geological record. Sulphur isotopic fractionation records indicate that large‐scale bacterial sulphate reduction began in marine environments around 2.45 billion years ago (Ga), followed by rapid oxygenation of the atmosphere about 2.3 or 2.2 Ga. Oxygenation was then followed by increasing oceanic sulphate concentrations (probably owing to pyrite oxidation and continental weathering), which then resulted in the disappearance of banded iron formations by 1.8 Ga. The similarity between the phylogenetic and geological records suggests that the geochemical changes observed on the Palaeoproterozoic Earth were caused by major origination events in the mesophilic bacteria, and that these geochemical changes then caused additional origination events, such as aerobic respiration. If so, then constraints on divergence dates can be established for many microbial groups, including the Cyanobacteria, mesophilic bacteria, mesophilic sulphate reducers, methanotrophs, several anoxygenic phototrophs, as well as for mitochondrial endosymbiosis. These dates may also help to explain a large number of other changes in the geological record of the Neoarchean and Palaeoproterozoic Earth. This hypothesis, however, does not agree with the finding of cyanobacterial and eukaryote lipids at 2.7 Ga, and suggests that further work needs to be done to elucidate the discrepancies in both these areas.
Geobiology – Wiley
Published: Jan 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.