Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Gokhale, J. Dumesic, M. Mavrikakis (2008)
On the mechanism of low-temperature water gas shift reaction on copper.Journal of the American Chemical Society, 130 4
M. Yu, D. Trinkle (2010)
Accurate and efficient algorithm for Bader charge integration.The Journal of chemical physics, 134 6
Schumacher N. (2005)
265J. Catal., 229
Yang Y. (2022)
6385Chem. Sci., 13
Márquez V. (2022)
140975Electrochim. Acta, 428
S. Grimme, J. Antony, S. Ehrlich, H. Krieg (2010)
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.The Journal of chemical physics, 132 15
Callaghan C. A. (2008)
213Appl. Catal., A, 345
Yang C. (2020)
155334J. Alloys Compd., 835
Roy S. (2021)
13819J. Phys. Chem. C, 125
Guihua Zhu, Ying Jiang, Haoyu Yang, Haifeng Wang, Yuan Fang, Lei Wang, Meng Xie, Pengpeng Qiu, Wei Luo (2022)
Constructing Structurally Ordered High‐Entropy Alloy Nanoparticles on Nitrogen‐Rich Mesoporous Carbon Nanosheets for High‐Performance Oxygen ReductionAdvanced Materials, 34
Roy D. (2022)
5991J. Phys. Chem. Lett., 13
Nelson N. C. (2020)
5663ACS Catal., 10
N. Schumacher, A. Boisen, S. Dahl, A. Gokhale, Shampa Kandoi, L. Grabow, J. Dumesic, M. Mavrikakis, I. Chorkendorff (2005)
Trends in low-temperature water–gas shift reactivity on transition metalsJournal of Catalysis, 229
Zhang D. (2021)
2006939Adv. Funct. Mater., 31
Eric Osei-Agyemang, G. Balasubramanian (2019)
Surface oxidation mechanism of a refractory high-entropy alloynpj Materials Degradation, 3
Yi Liu, M. Chi, Vismadeb Mazumder, K. More, S. Soled, J. Henao, Shouheng Sun (2011)
Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electro-oxidation of MethanolChemistry of Materials, 23
Ahmad F. (2019)
045001J. Phys.: Condens. Matter, 32
Zhe Jia, Tao Yang, Ligang Sun, Yilu Zhao, Wanpeng Li, J. Luan, Fucong Lyu, Lai‐Chang Zhang, J. Kruzic, J. Kai, Jacob Huang, Jian Lu, C. Liu (2020)
A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen EvolutionAdvanced Materials, 32
J. Yeh (2013)
Alloy Design Strategies and Future Trends in High-Entropy AlloysJOM, 65
D. Sholl, J. Steckel (2009)
Density Functional Theory: A Practical Introduction
Zeyu Jin, Juan Lyu, Yilu Zhao, Huanglong Li, Xi Lin, G. Xie, Xingjun Liu, J. Kai, H. Qiu (2020)
Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn–Air Batteries, 2
Knudsen J. (2007)
6485J. Am. Chem. Soc., 129
Caitlin Callaghan, Saurabh Vilekar, I. Fishtik, R. Datta (2008)
Topological analysis of catalytic reaction networks: Water gas shift reaction on Cu(111)Applied Catalysis A-general, 345
M. Rittiruam, Jakapob Noppakhun, Sorawee Setasuban, Nuttanon Aumnongpho, Attachai Sriwattana, Suphawich Boonchuay, T. Saelee, Chanthip Wangphon, A. Ektarawong, P. Chammingkwan, Toshiaki Taniike, S. Praserthdam, P. Praserthdam (2022)
High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloysScientific Reports, 12
B. Hammer, J. K. Nørskov (2000)
Advances in Catalysis
Jin Z. (2020)
1698ACS Mater. Lett., 2
Yeh J.‐W. (2013)
1759JOM, 65
Pedersen J. K. (2020)
2169ACS Catal., 10
Yanfeng Fang, Zaichun Liu, Jingrui Han, Zhaoyong Jin, Yaqian Han, Faxing Wang, Yusheng Niu, Yuping Wu, Yuanhong Xu (2019)
High‐Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen‐Vacancy‐Rich TiO2 In Situ Grown on Ti3C2Tx MXeneAdvanced Energy Materials, 9
N. Katiyar, K. Biswas, J. Yeh, Sudhanshu Sharma, C. Tiwary (2021)
A perspective on the catalysis using the high entropy alloysNano Energy, 88
Li H. (2020)
5437Nat. Commun., 11
Hao Liu, Hongye Qin, Jianli Kang, Liying Ma, Guoxin Chen, Qin Huang, Zhijia Zhang, E. Liu, Huan-ming Lu, Jianxin Li, N. Zhao (2022)
A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splittingChemical Engineering Journal
Hongdong Li, J. Lai, Zhenjiang Li, Lei Wang (2021)
Multi‐Sites Electrocatalysis in High‐Entropy AlloysAdvanced Functional Materials, 31
Hongdong Li, Yi Han, Huan Zhao, Wenjing Qi, Dan Zhang, Yaodong Yu, Wenwen Cai, Shaoxiang Li, J. Lai, Bolong Huang, Lei Wang (2020)
Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysisNature Communications, 11
Baraj E. (2021)
119817Fuel, 288
Diptendu Roy, S. Mandal, Biswarup Pathak (2022)
Machine Learning Assisted Exploration of High Entropy Alloy-Based Catalysts for Selective CO2 Reduction to Methanol.The journal of physical chemistry letters
V. Márquez, J. Santos, J. Buijnsters, S. Praserthdam, P. Praserthdam (2022)
Simple, controllable and environmentally friendly synthesis of FeCoNiCuZn-based high-entropy alloy (HEA) catalysts, and their surface dynamics during nitrobenzene hydrogenationElectrochimica Acta
Lin C.‐H. (2011)
18582J. Phys. Chem. C, 115
E. Sanville, S. Kenny, Roger Smith, G. Henkelman (2007)
Improved grid‐based algorithm for Bader charge allocationJournal of Computational Chemistry, 28
Smith B. (2010)
1Int. J. Chem. React. Eng., 8
Antolini E. (2009)
915Energy Environ. Sci., 2
T. Batchelor, Jack Pedersen, Simon Winther, I. Castelli, K. Jacobsen, J. Rossmeisl (2019)
High-Entropy Alloys as a Discovery Platform for ElectrocatalysisJoule
J. Knudsen, A. Nilekar, R. Vang, J. Schnadt, E. Kunkes, J. Dumesic, M. Mavrikakis, F. Besenbacher (2007)
A Cu/Pt near-surface alloy for water-gas shift catalysis.Journal of the American Chemical Society, 129 20
Fang Y. (2019)
1803406Adv. Energy Mater., 9
V. Márquez, Mohammad Feredooni, J. Santos, S. Praserthdam, P. Praserthdam (2022)
Effect of the annealing temperature of multi-elemental oxides (FeCoNiCuZn)yOx on the electrocatalytic hydrogenation of nitrobenzene at room temperatureElectrochimica Acta
G. Henkelman, Andri Arnaldsson, H. Jónsson (2006)
A fast and robust algorithm for Bader decomposition of charge densityComputational Materials Science, 36
Shiyin Li, X. Tang, Henglei Jia, Huanglong Li, G. Xie, Xingjun Liu, Xi Lin, H. Qiu (2020)
Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reductionJournal of Catalysis, 383
Ke Chu, Ya-ping Liu, Yu‐biao Li, Yali Guo, Ye Tian (2020)
2D/2D Interface Engineering of MoS2/C3N4 Heterostructure for Promoted Electrocatalytic Nitrogen Fixation.ACS applied materials & interfaces
Subramanian Nellaiappan, N. Katiyar, Ritesh Kumar, Arko Parui, K. Malviya, K.G. Pradeep, A. Singh, Sudhanshu Sharma, C. Tiwary, K. Biswas (2020)
High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental RealizationACS Catalysis, 10
S. Roy, A. Tiwari (2021)
Efficient Water–Gas Shift Catalysts for H2O and CO Dissociation Using Cu–Ni Step Alloy SurfacesThe Journal of Physical Chemistry C
Jack Pedersen, T. Batchelor, A. Bagger, J. Rossmeisl (2019)
High-Entropy Alloys as Catalysts for the CO2 and CO Reduction ReactionsACS Catalysis
M. Rittiruam, Puwit Buapin, T. Saelee, Patcharaporn Khajondetchairit, S. Kheawhom, B. Alling, S. Praserthdam, A. Ektarawong, P. Praserthdam (2022)
First-principles calculation on effects of oxygen vacancy on α-MnO2 and β-MnO2 during oxygen reduction reaction for rechargeable metal-air batteriesJournal of Alloys and Compounds
Kong W. (2019)
18823J. Mater. Chem. A, 7
Smita Ghosh, S. Hariharan, A. Tiwari (2017)
Water Adsorption and Dissociation on Copper/Nickel Bimetallic Surface Alloys: Effect of Surface Temperature on ReactivityJournal of Physical Chemistry C, 121
(2022)
Computer-Aided Design of Two-Dimensional Electrochemical Catalysts for Nitrogen Reduction Reaction
Yao R.‐Q. (2021)
2009613Adv. Funct. Mater., 31
N. Nelson, J. Szanyi (2019)
Heterolytic Hydrogen Activation: Understanding Support Effects in Water–Gas Shift, Hydrodeoxygenation, and CO Oxidation CatalysisACS Catalysis
Nellaiappan S. (2020)
3658ACS Catal., 10
N. Katiyar, Shikha Dhakar, Arko Parui, Pooja Gakhad, Ashutosh Singh, K. Biswas, C. Tiwary, Sudhanshu Sharma (2021)
Electrooxidation of Hydrazine Utilizing High-Entropy Alloys: Assisting the Oxygen Evolution Reaction at the Thermodynamic VoltageACS Catalysis
Dan Zhang, Huan Zhao, Xueke Wu, Ying Deng, Zuochao Wang, Yi Han, Hongdong Li, Yue Shi, Xilei Chen, Shaoxiang Li, J. Lai, Bolong Huang, Lei Wang (2020)
Multi‐Site Electrocatalysts Boost pH‐Universal Nitrogen Reduction by High‐Entropy AlloysAdvanced Functional Materials, 31
Neeraj Pandit, Diptendu Roy, S. Mandal, Biswarup Pathak (2022)
Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning.The journal of physical chemistry letters
G. Kresse, J. Furthmüller (1996)
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComputational Materials Science, 6
Gan L.‐Y. (2012)
745J. Phys. Chem. C, 116
Cheng Yang, Dai Zhang, Wenqi Zhao, Minghui Cui, Rongqing Liang, Q. Ou, Shuyu Zhang (2020)
Plasma-synthesized octahedral PtPd alloy/reduced graphene oxide nanocomposites with boosted electrocatalytic activity for methanol oxidationJournal of Alloys and Compounds, 835
Zhang D. (2021)
889J. Mater. Chem. A, 9
Pedersen J. K. (2021)
24144Angew. Chem., 60
Chu K. (2020)
7081ACS Appl. Mater. Interfaces, 12
T. Löffler, A. Savan, H. Meyer, Michael Meischein, Valerie Strotkötter, A. Ludwig, W. Schuhmann (2019)
Design of Complex Solid‐Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity CurvesAngewandte Chemie (International Ed. in English), 59
E. Antolini (2009)
Palladium in fuel cell catalysisEnergy and Environmental Science, 2
Yijia Yu, Wei Zhang, Fugen Sun, Qiao-jun Fang, Jinhui Pan, Wen-xian Chen, G. Zhuang (2022)
High electrocatalytical performance of FeCoNiCuPd high-entropy alloy for nitrogen reduction reactionMolecular Catalysis
Katiyar N. K. (2021)
14000ACS Catal., 11
Wang Y.‐X. (2020)
876Catal. Sci. Technol., 10
Liu Y. (2011)
4199Chem. Mater., 23
Yu Y.‐F. (2022)
112141Mol. Catal., 519
L. Sharma, N. Katiyar, Arko Parui, R. Das, Ritesh Kumar, C. Tiwary, A. Singh, Aditi Halder, K. Biswas (2021)
Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)Nano Research, 15
L. Gan, Ren-Yu Tian, Xiao-Bao Yang, Hongdo Lu, Yu-Jun Zhao (2012)
Catalytic Reactivity of CuNi Alloys toward H2O and CO Dissociation for an Efficient Water–Gas Shift: A DFT StudyJournal of Physical Chemistry C, 116
Chia Lin, C. Chen, Jenghan Wang (2011)
Mechanistic Studies of Water–Gas-Shift Reaction on Transition MetalsJournal of Physical Chemistry C, 115
Li H. (2021)
2106715Adv. Funct. Mater., 31
Erlisa Baraj, K. Ciahotný, T. Hlinčík (2020)
The water gas shift reaction: Catalysts and reaction mechanismFuel
Li S. (2020)
164J. Catal., 383
Diptendu Roy, S. Mandal, Biswarup Pathak (2021)
Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol.ACS applied materials & interfaces
B. Hammer, J. Nørskov (1995)
Electronic factors determining the reactivity of metal surfacesSurface Science, 343
Yue Xin, Shu-Cong Li, Yayang Qian, Wenkun Zhu, Haibo Yuan, Pengyan Jiang, Ruihan Guo, Liangbing Wang (2020)
High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and OpportunitiesACS Catalysis, 10
Gokhale A. A. (2008)
1402J. Am. Chem. Soc., 130
J. Kitchin, J. Nørskov, M. Barteau, Jingguang Chen (2004)
Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals.The Journal of chemical physics, 120 21
Katiyar N. K. (2021)
106261Nano Energy, 88
Ratnasamy C. (2009)
325Catal. Rev., 51
Löffler T. (2020)
5844Angew. Chem., Int. Ed., 59
C. Ratnasamy, J. Wagner (2009)
Water Gas Shift CatalysisCatalysis Reviews, 51
Xin Y. (2020)
11280ACS Catal., 10
Jack Pedersen, Christian Clausen, Olga Krysiak, B. Xiao, T. Batchelor, T. Löffler, V. Mints, Lars Banko, M. Arenz, A. Savan, W. Schuhmann, A. Ludwig, J. Rossmeisl (2021)
Bayesian Optimization of High‐Entropy Alloy Compositions for Electrocatalytic Oxygen ReductionAngewandte Chemie (International Ed. in English), 60
Ghosh S. (2017)
16351J. Phys. Chem. C, 121
Ruifang Yao, Yitong Zhou, H. Shi, Wu-Bin Wan, Qinghua Zhang, Lin Gu, Yongfu Zhu, Z. Wen, X. Lang, Q. Jiang (2020)
Nanoporous Surface High‐Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution ReactionAdvanced Functional Materials, 31
S. Praserthdam, Siriwimol Somdee, M. Rittiruam, P. Balbuena (2020)
Computational Study of the Evolution of Ni-Based Catalysts during the Dry Reforming of MethaneEnergy & Fuels, 34
Wang B. (2021)
19410J. Mater. Chem. A, 9
Chaonan Cui, Mengnan Sun, Xinli Zhu, Jinyu Han, Hua Wang, Q. Ge (2020)
Oxygen Reduction Reaction Catalyzed by Pt3M (M = 3d Transition Metals) Supported on O-doped GrapheneCatalysts
Márquez V. (2022)
139972Electrochim. Acta, 410
(2000)
Nørskov, in Advances in Catalysis
The water‐gas shift reaction (WGSR) is employed in industry to obtain high‐purity H2 from syngas, where H2O adsorption is an important step that controls H2O dissociation in WGSR. Therefore, exploring catalysts exhibiting strong H2O adsorption energy (Eads) is crucial. Also, high‐entropy alloys (HEA) are promising materials utilized as catalysts, including in WGSR. The PtPd‐based HEA catalysts are explored via density functional theory (DFT) and Gaussian process regression. The input features are based on the microstructure data and electronic properties: d‐band center (εd) and Bader net atomic charge (δ). The DFT calculation reveals that the εd and δ of each active site of all HEA surfaces are broadly scattered, indicating that the electronic properties of each atom on HEA are non‐uniform and influenced by neighboring atoms. The strong H2O‐active‐site interaction determined by a highly negative Eads is used as a criterion to explore good PtPd‐based WGSR catalyst candidates. As a result, the potential candidates are found to have Co, Ru, and Fe as an H2O adsorption site with Ag as a neighboring atom, that is, PtPdRhAgCo, PtPdRuAgCo, PtPdRhAgFe, and PtPdRuAgFe.
Advanced Theory and Simulations – Wiley
Published: Apr 1, 2023
Keywords: computational catalysis; heterogeneous catalyst screening; multi‐element alloys; supervised gaussian process regression
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.