Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Pitcher, L. Villanueva, E. Hopmans, Stefan Schouten, G. Reichart, J. Damsté (2011)
Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zoneThe ISME Journal, 5
HE Hartnett, RG Keil, JI Hedges, AH Devol (1998)
Influence of oxygen exposure time on organic carbon preservation in continental margin sedimentsGeochimica et Cosmochimica Acta, 391
Chun Zhu, J. Lipp, L. Wörmer, K. Becker, J. Schröder, K. Hinrichs (2013)
Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocolOrganic Geochemistry, 65
A. Pitcher, E. Hopmans, Stefan Schouten, J. Damsté (2009)
Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributions.Organic Geochemistry, 40
A Pitcher, N Rychlik, EC Hopmans, E Spieck, WIC Rijpstra, J Ossebaar, S Schouten, M Wagner, JS Sinninghe Damsté (2010)
Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b ArchaeonApplied and Environmental Microbiology, 4
AJ Powell, JD Dodge, J Lewis (1990)
Proceedings of the Ocean Drilling Program, Scientific Results, 112Applied and Environmental Microbiology
JS Sinninghe Damsté, WIC Rijpstra, G‐J Reichart (2002a)
The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sedimentsApplied and Environmental Microbiology, 66
S. Lengger, E. Hopmans, J. Damsté, Stefan Schouten (2012)
Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environmentsOrganic Geochemistry, 47
HR Harvey, RD Fallon, JS Patton (1986)
The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sedimentsMarine Chemistry, 50
SK Lengger, M Kraaij, M Baas, R Tjallingii, J‐B Stuut, EC Hopmans, JS Sinninghe Damsté, S Schouten (2013)
Differential degradation of intact polar and core glycerol dialkyl glycerol tetraether lipids upon post?depositional oxidationGeochimica et Cosmochimica Acta, 65
Ø. Hammer, D. Harper, P. Ryan (2001)
PAST: paleontological statistics software package for education and data analysis version 2.09
JS Sinninghe Damsté, WIC Rijpstra, EC Hopmans, MY Jung, JG Kim, SK Rhee, M Stieglmeier, C Schleper (2012)
Intact polar and core dibiphytanyl glycerol tetraether lipids of group I. 1a and I. 1b thaumarchaeota in soilProceedings of the National Academy of Sciences USA, 78
Xiao-Lei Liu, J. Lipp, K. Hinrichs (2011)
Distribution of intact and core GDGTs in marine sedimentsOrganic Geochemistry, 42
K. Lloyd, Lars Schreiber, D. Petersen, K. Kjeldsen, M. Lever, A. Steen, R. Stepanauskas, M. Richter, S. Kleindienst, Sabine Lenk, A. Schramm, B. Jørgensen (2013)
Predominant archaea in marine sediments degrade detrital proteinsNature, 496
JS Lipp, K‐U Hinrichs (2009)
Structural diversity and fate of intact polar lipids in marine sedimentsNature, 73
J. Damsté, W. Rijpstra, E. Hopmans, Man-Young Jung, Jong-Geol Kim, S. Rhee, Michaela Stieglmeier, C. Schleper (2012)
Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b Thaumarchaeota in SoilApplied and Environmental Microbiology, 78
Man-Young Jung, Soo-Je Park, Deullae Min, Jin-Seog Kim, W. Rijpstra, Jaap Damsté, Geun-Joong Kim, Eugene Madsen, S. Rhee (2011)
Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural SoilApplied and Environmental Microbiology, 77
(2003)
Controls on Microbial Communities in Deeply Buried Sediments, Eastern Equatorial Pacific and Peru Margin Proceedings of the Ocean Drilling Program, Initial Reports 201
S Schouten, EC Hopmans, JS Sinninghe Damsté (2013)
The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a reviewGeochimica et Cosmochimica Acta, 54
J‐H Kim, J Meer, S Schouten, P Helmke, V Willmott, F Sangiorgi, N Koç, EC Hopmans, JS Sinninghe Damsté (2010)
New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructionsBioscience, Biotechnology, and Biochemistry, 74
A Pitcher, EC Hopmans, AC Mosier, S‐J Park, S‐K Rhee, CA Francis, S Schouten, JS Sinninghe Damsté (2011a)
Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia?oxidizing archaea enriched from marine and estuarine sedimentsThe ISME Journal, 77
Biddle (2006)
Heterotrophic Archaea dominate sedimentary subsurface ecosystems off PeruProceedings of the National Academy of Sciences USA, 103
X Liu, JS Lipp, K‐U Hinrichs (2011)
Distribution of intact and core GDGTs in marine sedimentsBiogeosciences, 42
C. Woese, G. Fox (1977)
Phylogenetic structure of the prokaryotic domain: The primary kingdomsProceedings of the National Academy of Sciences of the United States of America, 74
Sitan Xie, J. Lipp, G. Wegener, T. Ferdelman, K. Hinrichs (2013)
Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populationsProceedings of the National Academy of Sciences, 110
H. Harvey, R. Fallon, J. Patton (1986)
The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sedimentsGeochimica et Cosmochimica Acta, 50
J. Lipp, Y. Morono, F. Inagaki, K. Hinrichs (2008)
Significant contribution of Archaea to extant biomass in marine subsurface sedimentsNature, 454
J. Biddle, J. Lipp, M. Lever, K. Lloyd, K. Sørensen, Rika Anderson, Helen Fredricks, M. Elvert, T. Kelly, D. Schrag, M. Sogin, J. Brenchley, A. Teske, C. House, K. Hinrichs (2006)
Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru.Proceedings of the National Academy of Sciences of the United States of America, 103 10
Y Koga, M Nakano (2008)
A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogenyMetabolism, 31
A. Powell, J. Dodge, Jane Lewis (1990)
Late Neogene to Pleistocene Palynological Facies of the Peruvian Continental Margin Upwelling, Leg 112
JI Hedges, RG Keil (1995)
Sedimentary organic matter preservation: an assessment and speculative synthesisOrganic Geochemistry, 49
T. Langworthy (1977)
Long-chain diglycerol tetraethers from Thermoplasma acidophilum.Biochimica et biophysica acta, 487 1
J. Lipp, K. Hinrichs (2009)
Structural diversity and fate of intact polar lipids in marine sedimentsGeochimica et Cosmochimica Acta, 73
Stefan Schouten, J. Middelburg, E. Hopmans, J. Damsté (2010)
Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approachGeochimica et Cosmochimica Acta, 74
Stefan Schouten, E. Hopmans, J. Damsté (2013)
The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A reviewOrganic Geochemistry, 54
JS Lipp, Y Morono, F Inagaki, K‐U Hinrichs (2008)
Significant contribution of Archaea to extant biomass in marine subsurface sedimentsOrganic Geochemistry, 454
Stefan Schouten, E. Hopmans, M. Baas, H. Boumann, Sonja Standfest, M. Könneke, D. Stahl, J. Damsté (2008)
Intact Membrane Lipids of “Candidatus Nitrosopumilus maritimus,” a Cultivated Representative of the Cosmopolitan Mesophilic Group I CrenarchaeotaApplied and Environmental Microbiology, 74
Jung-Hyun Kim, J. Meer, Stefan Schouten, P. Helmke, V. Willmott, F. Sangiorgi, N. Koç, E. Hopmans, J. Damsté (2010)
New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructionsGeochimica et Cosmochimica Acta, 74
J Logemann, J Graue, J Köster, B Engelen, J Rullkötter, H Cypionka (2011)
A laboratory experiment of intact polar lipid degradation in sandy sedimentsOrganic Geochemistry, 8
Ø. Hammer, D. Harper, P. Ryan (2001)
PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSISPalaeontologia Electronica, 4
TA Langworthy (1977)
Long?chain diglycerol tetraethers from Thermoplasma acidophilum. Biochimica et Biophysica Acta (BBA) ? Lipids and LipidGeochimica et Cosmochimica Acta, 487
J. Damsté, Stefan Schouten, E. Hopmans, A. Duin, J. Geenevasen (2002)
Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota.Journal of lipid research, 43 10
M. Oba, S. Sakata, U. Tsunogai (2006)
Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai TroughOrganic Geochemistry, 37
C. Huguet, E. Hopmans, Wilma Febo-Ayala, D. Thompson, J. Damsté, Stefan Schouten (2006)
An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipidsOrganic Geochemistry, 37
G. Skilbeck, D. Fink (2006)
Radiocarbon dating and sedimentation rates for holocene-upper pleistocene sediments, eastern equatorial pacific and Peru continental margin
J. Weijers, K. Lim, Alfred Aquilina, J. Damsté, R. Pancost (2011)
Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane fluxGeochemistry, 12
Y. Koga, H. Morii (2005)
Recent Advances in Structural Research on Ether Lipids from Archaea Including Comparative and Physiological AspectsBioscience, Biotechnology, and Biochemistry, 69
S Schouten, A Pitcher, EC Hopmans, L Villanueva, J Bleijswijk, JS Sinninghe Damsté (2012)
Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86Environmental Microbiology, 98
S. Lengger, E. Hopmans, G. Reichart, K. Nierop, J. Damsté, Stefan Schouten (2012)
Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86Geochimica et Cosmochimica Acta, 98
J. Logemann, J. Graue, J. Köster, B. Engelen, J. Rullkötter, H. Cypionka (2011)
A laboratory experiment of intact polar lipid degradation in sandy sedimentsBiogeosciences, 8
Ø Hammer, DAT Harper, PD Ryan (2001)
PAST: paleontological Statistics software package for education and data analysisNature, 4
F Schubotz, SG Wakeham, JS Lipp, HF Fredricks, K‐U Hinrichs (2009)
Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black SeaJournal of Lipid Research, 11
S Schouten, EC Hopmans, M Baas, H Boumann, S Standfest, M Könneke, DA Stahl, JS Sinninghe Damsté (2008)
Intact membrane lipids of ?Candidatus Nitrosopumilus maritimus?, a cultivated representative of the cosmopolitan mesophilic group I crenarchaeotaGeochimica et Cosmochimica Acta, 74
JWH Weijers, KL Lim, A Aquilina, JS Sinninghe Damsté, RD Pancost (2011)
Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane fluxOrganic Geochemistry, 12
S. Lengger, M. Kraaij, R. Tjallingii, M. Baas, J. Stuut, E. Hopmans, J. Damsté, Stefan Schouten (2013)
Differential degradation of intact polar and core glycerol dialkyl glycerol tetraether lipids upon post-depositional oxidationOrganic Geochemistry, 65
A Pitcher, EC Hopmans, L Villanueva, G‐J Reichart, S Schouten, JS Sinninghe Damsté (2011b)
Niche segregation of ammonia?oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zoneEarth and Planetary Science Letters, 5
A. Pitcher, E. Hopmans, Annika Mosier, Soo-Je Park, S. Rhee, C. Francis, Stefan Schouten, J. Damsté (2011)
Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine SedimentsApplied and Environmental Microbiology, 77
SK Lengger, EC Hopmans, G‐J Reichart, KGJ Nierop, JS Sinninghe Damsté, S Schouten (2012a)
Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: II. Selective preservation and degradation in sediments and consequences for the TEX86Organic Geochemistry, 98
J. Hedges, R. Keil (1995)
Sedimentary organic matter preservation: an assessment and speculative synthesisMarine Chemistry, 49
S Schouten, EC Hopmans, E Schefuß, JS Sinninghe Damsté (2002)
Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?Geochimica et Cosmochimica Acta, 204
S Schouten, JJ Middelburg, EC Hopmans, JS Sinninghe Damsté (2010)
Fossilization and degradation of intact polar lipids in deep subsurface sediments: a theoretical approachOrganic Geochemistry, 74
A. Pitcher, N. Rychlik, E. Hopmans, E. Spieck, W. Rijpstra, J. Ossebaar, Stefan Schouten, M. Wagner, J. Damsté (2010)
Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b ArchaeonThe ISME Journal, 4
Jaap Damsté, W. Rijpstra, G. Reichart (2002)
The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sedimentsGeochimica et Cosmochimica Acta, 66
Stefan Schouten, E. Hopmans, E. Schefuß, J. Damsté (2002)
Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?Earth and Planetary Science Letters, 204
Y. Koga, M. Nakano (2008)
A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny.Systematic and applied microbiology, 31 3
CG Skilbeck, D Fink (2006)
Proceedings of the Ocean Drilling Program, Scientific Results, 201Proceedings of the National Academy of Science USA
H. Hartnett, R. Keil, J. Hedges, A. Devol (1998)
Influence of oxygen exposure time on organic carbon preservation in continental margin sedimentsNature, 391
D. Gutiérrez, I. Bouloubassi, A. Sifeddine, S. Purca, K. Goubanova, M. Graco, D. Field, L. Méjanelle, F. Velazco, A. Lorre, R. Salvatteci, Daniel Quispe, G. Vargas, B. Dewitte, Luc Ortlieb (2011)
Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid‐twentieth centuryGeophysical Research Letters, 38
Y Koga, H Morii (2005)
Recent advances in structural research on ether lipids from archaea including comparative and physiological aspectsSystematic and Applied Microbiology, 69
C Huguet, EC Hopmans, W Febo‐Ayala, DH Thompson, JS Sinninghe Damsté, S Schouten (2006)
An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipidsGeochimica et Cosmochimica Acta, 37
D Gutiérrez, I Bouloubassi, A Sifeddine, S Purca, K Goubanova, M Graco, D Field, L Méjanelle, F Velazco, A Lorre, R Salvatteci, D Quispe, G Vargas, B Dewitte, L Ortlieb (2011)
Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid?twentieth centuryPalaeontologica Electronica, 38
F. Schubotz, S. Wakeham, J. Lipp, Helen Fredricks, K. Hinrichs (2009)
Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea.Environmental microbiology, 11 10
JS Sinninghe Damsté, S Schouten, EC Hopmans, ACT Duin, JAJ Geenevasen (2002b)
Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeotaGeochemistry Geophysics Geosystems, 43
A Pitcher, EC Hopmans, S Schouten, JS Sinninghe Damsté (2009)
Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributionsThe ISME Journal, 40
T. Bauersachs, E. Speelman, E. Hopmans, G. Reichart, S. Schouten, J. Damsté (2010)
Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteriaProceedings of the National Academy of Sciences, 107
Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL‐GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death, but it has been suggested that some of these IPL‐GDGTs can, just like the CL‐GDGTs, be preserved over geological timescales. Here, we examined IPL‐GDGTs in deeply buried (0.2–186 mbsf, ~2.5 Myr) sediments from the Peru Margin. Direct measurements of the most abundant IPL‐GDGT, IPL‐crenarchaeol, specific for Thaumarchaeota, revealed depth profiles, which differed per head group. Shallow sediments (<1 mbsf) contained IPL‐crenarchaeol with both glycosidic and phosphate head groups, as also observed in thaumarchaeal enrichment cultures, marine suspended particulate matter and marine surface sediments. However, hexose, phosphohexose‐crenarchaeol is not detected anymore below 6 mbsf (~7 kyr), suggesting a high lability. In contrast, IPL‐crenarchaeol with glycosidic head groups is preserved over timescales of Myr. This agrees with previous analyses of deeply buried (>1 m) marine sediments, which only reported glycosidic and no phosphate‐containing IPL‐GDGTs. TEX86 values of CL‐GDGTs did not markedly change with depth, and the TEX86 of IPL‐derived GDGTs decreased only when the proportions of monohexose‐ to dihexose‐GDGTs changed, likely due to the enhanced preservation of the monohexose GDGTs. Our results support the hypothesis that in situ GDGT production and differential IPL degradation in sediments is not substantially affecting TEX86 paleotemperature estimations based on CL–GDGTs and indicates that likely only a small amount of IPL‐GDGTs present in deeply buried sediments is part of cell membranes of active archaea. The amount of archaeal biomass in the deep biosphere based on these IPLs may have been substantially overestimated.
Geobiology – Wiley
Published: Jan 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.