Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. King, Heather Lounsbury, F. Millero (1995)
Rates and Mechanism of Fe(II) Oxidation at Nanomolar Total Iron Concentrations.Environmental science & technology, 29 3
Laufer K. (2016)
1433Applied and Environmental Microbiology, 82
Stookey L. L. (1970)
779Analytical Chemistry, 42
W. Miller, D. Kester (1994)
Photochemical iron reduction and iron bioavailability in seawaterJournal of Marine Research, 52
Millero F. J. (1987)
793Geochimica Et Cosmochimica Acta, 51
M. Nadkarni, F. Martin, N. Jacques, N. Hunter (2002)
Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set.Microbiology, 148 Pt 1
Emmenegger L. (2001)
49Limnology and Oceanography, 46
Otte J. M. (2018)
2483Environmental Microbiology, 20
L. Emmenegger, R. Schönenberger, L. Sigg, B. Sulzberger (2001)
Light‐induced redox cycling of iron in circumneutral lakesLimnology and Oceanography, 46
L. Stookey (1970)
Ferrozine---a new spectrophotometric reagent for ironAnalytical Chemistry, 42
Edith Kaiser1, B. Sulzberger (2004)
Phototransformation of riverine dissolved organic matter (DOM) in the presence of abundant iron: Effect on DOM bioavailabilityLimnology and Oceanography, 49
David Jones (1998)
Organic acids in the rhizosphere – a critical reviewPlant and Soil, 205
T. Waite, R. Szymczak, Q. Espey, M. Furnas (1995)
Diel variations in iron speciation in northern Australian shelf watersMarine Chemistry, 50
Kaiser E. (2004)
540Limnology and Oceanography, 49
E. Field, S. Kato, A. Findlay, D. MacDonald, B. Chiu, G. Luther, C. Chan (2016)
Planktonic marine iron oxidizers drive iron mineralization under low‐oxygen conditionsGeobiology, 14
King W. D. (1993)
105Marine Chemistry, 44
Emerson D. (2005)
112
Miller W. L. (1994)
325Journal of Marine Research, 52
C. Cohn, A. Pak, D. Strongin, M. Schoonen (2005)
Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violetGeochemical Transactions, 6
Bennett J. H. (1982)
335Journal of Plant Nutrition, 5
Waite T. D. (1995)
79Marine Chemistry, 50
H. Tamura, K. Goto, M. Nagayama (1976)
The effect of ferric hydroxide on the oxygenation of ferrous ions in neutral solutionsCorrosion Science, 16
Slowey A. J. (2012)
6Geochemical Transactions, 13
Barbeau K. (2003)
1069Limnology and Oceanography, 48
A. Kappler, C. Bryce, M. Mansor, U. Lueder, J. Byrne, E. Swanner (2021)
An evolving view on biogeochemical cycling of ironNature Reviews Microbiology, 19
J. Otte, Johannes Harter, K. Laufer, N. Blackwell, D. Straub, A. Kappler, S. Kleindienst (2018)
The distribution of active iron‐cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradientsEnvironmental Microbiology, 20
Kappler A. (2017)
842Environmental Microbiology, 19
Kato S. (2012)
896Geomicrobiology Journal, 29
Gauger T. (2015)
1067Geology, 43
Rijkenberg M. J. A. (2005)
119Marine Chemistry, 93
A. Rose, T. Waite (2005)
Reduction of organically complexed ferric iron by superoxide in a simulated natural water.Environmental science & technology, 39 8
Barnes A. (2009)
192Journal of Geochemical Exploration, 100
A. Barnes, D. Sapsford, M. Dey, K. Williams (2009)
Heterogeneous Fe(II) oxidation and zeta potentialJournal of Geochemical Exploration, 100
Weiss J. V. (2003)
77Biogeochemistry, 64
Tamura H. (1976)
197Corrosion Science, 16
Tschech A. (1984)
163Archives of Microbiology, 137
Kuma K. (1995)
1559Water Research, 29
B. Sulzberger, D. Suter, C. Siffert, S. Banwart, W. Stumm (1989)
Dissolution of fe(iii)(hydr)oxides in natural waters; laboratory assessment on the kinetics controlled by surface coordinationMarine Chemistry, 28
Brendel P. J. (1995)
751Environmental Science and Technology, 29
Sulzberger B. (1989)
127Marine Chemistry, 28
J. Bennett, E. Lee, D. Krizek, R. Olsen, J. Brown (1982)
Photochemical reduction of iron. II. Plant related factorsJournal of Plant Nutrition, 5
A. Mucha, C. Almeida, A. Bordalo, M. Vasconcelos (2005)
Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sedimentsEstuarine Coastal and Shelf Science, 65
Swanner E. D. (2011)
339Chemical Geology, 284
B. Faust, R. Zepp (1993)
Photochemistry of aqueous iron(III)-polycarboxylate complexes : roles in the chemistry of atmospheric and surface watersEnvironmental Science & Technology, 27
U. Lueder, Markus Maisch, K. Laufer, B. Jørgensen, A. Kappler, C. Schmidt (2020)
Influence of physical perturbation on Fe(II) supply in coastal marine sediments.Environmental science & technology
H. Piazena, E. Perez-Rodrigues, D. Häder, F. López-Figueroa (2002)
Penetration of solar radiation into the water column of the central subtropical Atlantic Ocean—optical properties and possible biological consequencesDeep-sea Research Part Ii-topical Studies in Oceanography, 49
McBeth J. M. (2011)
1405Applied and Environmental Microbiology, 77
H. Mottola, B. Simpson, G. Gorin (1970)
Absorptiometric determination of hydrogen peroxide in submicrogram amounts with leuco crystal violet and peroxidase as catalystAnalytical Chemistry, 42
Cohn C. A. (2005)
47Geochemical Transactions, 6
E. Swanner, R. Nell, A. Templeton (2011)
Ralstonia species mediate Fe-oxidation in circumneutral, metal-rich subsurface fluids of Henderson mine, COChemical Geology, 284
Rose A. L. (2005)
2645Environmental Science and Technology, 39
Hansel C. M. (2015)
409Elements, 11
Pehkonen S. O. (1993)
2056Environmental Science and Technology, 27
St Clair B. (2019)
905ACS Earth and Space Chemistry, 3
Chao Peng, C. Bryce, A. Sundman, A. Kappler (2019)
Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing BacteriaApplied and Environmental Microbiology, 85
Macdonald D. J. (2014)
2117Environmental Sciences: Processes and Impacts, 16
Druschel G. K. (2008)
3358Geochimica Et Cosmochimica Acta, 72
K. L. Straub, A. Kappler, B. Schink (2005)
Methods in enzymology
S. Pehkonen, R. Siefert, Y. Erel, S. Webb, M. Hoffmann (1993)
Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compoundsEnvironmental Science & Technology, 27
Lueder U. (2020)
3209Environmental Science and Technology, 54
Emerson D. (2010)
561Annual Review of Microbiology, 64
Mottola H. A. (1970)
410Analytical Chemistry, 42
H. Abrahamson, A. Rezvani, J. Brushmiller (1994)
Photochemical and spectroscopic studies of complexes, of iron(III) with citric acid and other carboxylic acidsInorganica Chimica Acta, 226
Faust B. C. (1993)
2517Environmental Science and Technology, 27
Huang J. (2021)
8161Chemical Reviews, 121
Kappler A. (2021)
360Nature Reviews Microbiology, 19
U. Lueder, B. Jørgensen, Markus Maisch, C. Schmidt, A. Kappler (2022)
Influence of Fe(III) source, light quality, photon flux and presence of oxygen on photoreduction of Fe(III)-organic complexes - Implications for light-influenced coastal freshwater and marine sediments.The Science of the total environment
Jørgensen B. B. (1987)
879Applied and Environmental Microbiology, 53
Markus Maisch, U. Lueder, K. Laufer, Caroline Scholze, A. Kappler, C. Schmidt (2019)
Contribution of microaerophilic iron(II)-oxidizers to iron(III) mineral formation.Environmental science & technology
A. Slowey, M. Marvin-DiPasquale (2012)
How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), mn(II), and S(−II) in undisturbed soils and sediments using voltammetryGeochemical Transactions, 13
Gauger T. (2016)
301Astrobiology, 16
Maisch M. (2019)
8197Environmental Science and Technology, 53
Jing Dou, P. Alpert, P. Arroyo, B. Luo, F. Schneider, Jacinta Xto, T. Huthwelker, C. Borca, K. Henzler, J. Raabe, B. Watts, H. Herrmann, T. Peter, M. Ammann, U. Krieger (2021)
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process modelAtmospheric Chemistry and Physics, 21
C. Bryce, N. Blackwell, C. Schmidt, J. Otte, Yu-Ming Huang, S. Kleindienst, E. Tomaszewski, M. Schad, V. Warter, Chao Peng, J. Byrne, A. Kappler (2018)
Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implicationsEnvironmental Microbiology, 20
Jianzhi Huang, Adele Jones, T. Waite, Yiling Chen, Xiaopeng Huang, K. Rosso, A. Kappler, M. Mansor, Paul Tratnyek, Huichun Zhang (2021)
Fe(II) Redox Chemistry in the Environment.Chemical reviews
Cooper W. J. (1988)
333
K. Kuma, S. Nakabayashi, K. Matsunaga (1995)
Photoreduction of Fe(III) by hydroxycarboxylic acids in seawaterWater Research, 29
Neubauer S. C. (2002)
3988Applied and Environmental Microbiology, 68
Sulzberger B. (2009)
104Aquatic Sciences, 71
Bristow G. (2008)
153Computers and Geosciences, 34
King D. W. (1995)
818Environmental Science and Technology, 29
K. Barbeau (2006)
Photochemistry of Organic Iron(III) Complexing Ligands in Oceanic Systems, 82
N. Pfennig (1978)
Rhodocyclus purpureus gen. nov. and sp. nov., a Ring-Shaped, Vitamin B12-Requiring Member of the Family RhodospirillaceaeInternational Journal of Systematic and Evolutionary Microbiology, 28
K. Straub, A. Kappler, B. Schink (2005)
Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria.Methods in enzymology, 397
M. J. Pullin, S. Bertilsson, J. V. Goldstone, B. M. Voelker (2004)
Effects of sunlight and hydroxyl radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substrates, 49
Nadkarni M. A. (2002)
257Microbiology, 148
Shingo Kato, S. Kikuchi, T. Kashiwabara, Y. Takahashi, Katsuhiko Suzuki, T. Itoh, M. Ohkuma, A. Yamagishi (2012)
Prokaryotic Abundance and Community Composition in a Freshwater Iron-Rich Microbial Mat at Circumneutral pHGeomicrobiology Journal, 29
Bryce C. (2018)
3462Environmental Microbiology, 20
Pfennig N. (1978)
283International Journal of Systematic Bacteriology, 28
Zhang P. (2017)
153Geochimica Et Cosmochimica Acta, 218
M. Kühl, C. Lassen, B. Jørgensen (1994)
Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobesMarine Ecology Progress Series, 105
Lueder U. (2022)
152767Science of the Total Environment, 814
D. Emerson, M. Floyd (2005)
Enrichment and isolation of iron-oxidizing bacteria at neutral pH.Methods in enzymology, 397
Peng C. (2019)
e02826Applied and Environmental Microbiology, 85
Kühl M. (1994)
139Marine Ecology Progress Series, 105
Peng Zhang, S. Yuan (2017)
Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acidsGeochimica et Cosmochimica Acta, 218
D. Emerson, C. Moyer (2002)
Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide DepositionApplied and Environmental Microbiology, 68
D. King, R. Aldrich, S. Charnecki (1993)
Photochemical redox cycling of iron in NaCl solutionsMarine Chemistry, 44
Barbeau K. (2006)
1505Photochemistry and Photobiology, 82
K. Barbeau, E. Rue, C. Trick, K. Bruland, A. Butler (2003)
Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groupsLimnology and Oceanography, 48
B. Sulzberger, E. Durisch-Kaiser (2009)
Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailabilityAquatic Sciences, 71
Emerson D. (1997)
4784Applied and Environmental Microbiology, 63
G. Bristow, M. Taillefert (2008)
VOLTINT: A Matlab®-based program for semi-automated processing of geochemical data acquired by voltammetryComput. Geosci., 34
Jones D. L. (1998)
25Plant and Soil, 205
D. Emerson, E. Fleming, J. McBeth (2010)
Iron-oxidizing bacteria: an environmental and genomic perspective.Annual review of microbiology, 64
Park B. (2005)
6494Environmental Science and Technology, 39
U. Lueder, B. B. Jørgensen, A. Kappler, C. Schmidt (2020)
Fe(III) photoreduction producing Feaq, 54
C. Hansel, T. Ferdelman, B. Tebo (2015)
Cryptic Cross-Linkages Among Biogeochemical Cycles: Novel Insights from Reactive IntermediatesElements, 11
M. Pullin, S. Bertilsson, J. Goldstone, B. Voelker (2004)
Effects of sunlight and hydroxyl radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substratesLimnology and Oceanography, 49
W. Davison, G. Seed (1983)
The kinetics of the oxidation of ferrous iron in synthetic and natural watersGeochimica et Cosmochimica Acta, 47
Chan C. S. (2016)
509Geobiology, 14
Abrahamson H. B. (1994)
117Inorganica Chimica Acta, 226
A. Gülay, Y. Çekiç, S. Musovic, H. Albrechtsen, B. Smets (2018)
Diversity of Iron Oxidizers in Groundwater-Fed Rapid Sand Filters: Evidence of Fe(II)-Dependent Growth by Curvibacter and Undibacterium spp.Frontiers in Microbiology, 9
Piazena H. (2002)
3513Deep‐Sea Research Part II: Topical Studies in Oceanography, 49
Schmidt C. (2010)
399Environmental Chemistry, 7
T. Gauger, K. Konhauser, A. Kappler (2016)
Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.Astrobiology, 16 4
F. Millero, S. Sotolongo, Miguel Izaguirre (1987)
The oxidation kinetics of Fe(II) in seawaterGeochimica et Cosmochimica Acta, 51
J. McBeth, B. Little, R. Ray, K. Farrar, D. Emerson (2010)
Neutrophilic Iron-Oxidizing “Zetaproteobacteria” and Mild Steel Corrosion in Nearshore Marine EnvironmentsApplied and Environmental Microbiology, 77
Davison W. (1983)
67Geochimica Et Cosmochimica Acta, 47
U. Lueder, B. Jørgensen, A. Kappler, C. Schmidt (2019)
Fe(III) photoreduction producing Fe2+aq in oxic freshwater sediment.Environmental science & technology
Straub K. L. (2005)
58
C. Schmidt, S. Behrens, A. Kappler (2010)
Ecosystem functioning from a geomicrobiological perspective - a conceptual framework for biogeochemical iron cyclingEnvironmental Chemistry, 7
W. Cooper, R. Zika, R. Petasne, A. Fischer (1988)
Sunlight-Induced Photochemistry of Humic Substances in Natural Waters: Major Reactive Species
Mucha A. P. (2005)
191Estuarine, Coastal and Shelf Science, 65
Dou J. (2021)
315Atmospheric Chemistry and Physics, 21
Gülay A. (2018)
2808Frontiers in Microbiology, 9
Emerson D. (2002)
3085Applied and Environmental Microbiology, 68
T. Gauger, K. Konhauser, A. Kappler (2015)
Protection of phototrophic iron(II)-oxidizing bacteria from UV irradiation by biogenic iron(III) minerals: Implications for early Archean banded iron formationGeology, 43
K. Laufer, M. Nordhoff, H. Røy, C. Schmidt, S. Behrens, B. Jørgensen, A. Kappler (2015)
Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine SedimentApplied and Environmental Microbiology, 82
S. Neubauer, D. Emerson, J. Megonigal (2002)
Life at the Energetic Edge: Kinetics of Circumneutral Iron Oxidation by Lithotrophic Iron-Oxidizing Bacteria Isolated from the Wetland-Plant RhizosphereApplied and Environmental Microbiology, 68
Field E. K. (2016)
499Geobiology, 14
M. Rijkenberg, A. Fischer, J. Kroon, L. Gerringa, K. Timmermans, H. Wolterbeek, H. Baar (2005)
The influence of UV irradiation on the photoreduction of iron in the Southern OceanMarine Chemistry, 93
Lueder U. (2020)
862Environmental Science and Technology, 54
A. Kappler, C. Bryce (2017)
Cryptic biogeochemical cycles: unravelling hidden redox reactions.Environmental microbiology, 19 3
B. Jørgensen, Y. Cohen, D. Marais (1987)
Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial matApplied and Environmental Microbiology, 53
J. Weiss, D. Emerson, Stephanie Backer, J. Megonigal (2003)
Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycleBiogeochemistry, 64
D. MacDonald, A. Findlay, S. McAllister, J. Barnett, P. Hredzak-Showalter, S. Krepski, Shane Cone, J. Scott, Sarah Bennett, C. Chan, D. Emerson, George III (2014)
Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites.Environmental science. Processes & impacts, 16 9
U. Lueder, G. Druschel, D. Emerson, A. Kappler, C. Schmidt (2018)
Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)‐oxidizing bacteriaFEMS Microbiology Ecology, 94
Pullin M. J. (2004)
2011Limnology and Oceanography, 49
Brian Clair, J. Pottenger, R. Debes, K. Hanselmann, E. Shock (2019)
Distinguishing Biotic and Abiotic Iron Oxidation at Low TemperaturesACS Earth and Space Chemistry
A. Tschech, N. Pfennig (1984)
Growth yield increase linked to caffeate reduction in Acetobacterium woodiiArchives of Microbiology, 137
W. J. Cooper, R. G. Zika, R. G. Petasne, A. M. Fischer (1988)
Aquatic humic substances, advances in chemistry
D. Emerson, C. Moyer (1997)
Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pHApplied and Environmental Microbiology, 63
P. Brendel, G. Luther (1995)
Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments.Environmental science & technology, 29 3
G. Druschel, D. Emerson, R. Sutka, P. Suchecki, G. Luther (2008)
Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganismsGeochimica et Cosmochimica Acta, 72
U. Park, B. Dempsey (2005)
Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2.Environmental science & technology, 39 17
F. Widdel, S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, B. Schink (1993)
Ferrous iron oxidation by anoxygenic phototrophic bacteriaNature, 362
Widdel F. (1993)
834Nature, 362
Clara Chan, Clara Chan, David Emerson, G. Luther (2016)
The role of microaerophilic Fe‐oxidizing micro‐organisms in producing banded iron formationsGeobiology, 14
Iron(II) (Fe(II)) can be formed by abiotic Fe(III) photoreduction, particularly when Fe(III) is organically complexed. Light‐influenced environments often overlap or even coincide with oxic or microoxic geochemical conditions, for example, in sediments. So far, it is unknown whether microaerophilic Fe(II)‐oxidizing bacteria are able to use the Fe(II) produced by Fe(III) photoreduction as electron donor. Here, we present an adaption of the established agar‐stabilized gradient tube approach in comparison with liquid cultures for the cultivation of microaerophilic Fe(II)‐oxidizing microorganisms by using a ferrihydrite‐citrate mixture undergoing Fe(III) photoreduction as Fe(II) source. We quantified oxygen and Fe(II) gradients with amperometric and voltammetric microelectrodes and evaluated microbial growth by qPCR of 16S rRNA genes. We showed that gradients of dissolved Fe(II) (maximum Fe(II) concentration of 1.25 mM) formed in the gradient tubes when incubated in blue or UV light (400–530 nm or 350–400 nm). Various microaerophilic Fe(II)‐oxidizing bacteria (Curvibacter sp. and Gallionella sp.) grew by oxidizing Fe(II) that was produced in situ by Fe(III) photoreduction. Best growth for these species, based on highest gene copy numbers, was observed in incubations using UV light in both liquid culture and gradient tubes containing 8 mM ferrihydrite‐citrate mixtures (1:1), due to continuous light‐induced Fe(II) formation. Microaerophilic Fe(II)‐oxidizing bacteria contributed up to 40% to the overall Fe(II) oxidation within 24 h of incubation in UV light. Our results highlight the potential importance of Fe(III) photoreduction as a source of Fe(II) for Fe(II)‐oxidizing bacteria by providing Fe(II) in illuminated environments, even under microoxic conditions.
Geobiology – Wiley
Published: May 1, 2022
Keywords: chemical and microbial Fe(II) oxidation; cryptic cycling; cultivation; iron(II)‐oxidizing bacteria; iron(III) photoreduction; microoxic
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.