Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Highly Elastic and Ultratough Hybrid Ionic–Covalent Hydrogels with Tunable Structures and Mechanics

Highly Elastic and Ultratough Hybrid Ionic–Covalent Hydrogels with Tunable Structures and Mechanics Hybrid ionically–covalently crosslinked double‐network (DN) hydrogels are attracting increasing attention on account of their self‐recovery ability and fatigue resistance, but their relative low mechanical strength and tedious performance adjustment severely limit their applications. Herein, a new strategy to concurrently fabricate hybrid ionic–covalent DN hydrogels and modulate their structures and mechanics is reported, in which an in situ formed chitosan ionic network is incorporated by post‐crosslinking the chitosan‐based composite hydrogel using multivalent anions solutions. The obtained hybrid DN hydrogels exhibit predominant mechanical properties including superior elastic modulus, high tensile strength, and ultrahigh fracture energy because of the more efficient energy dissipation of rigid short‐chain chitosan network. Notably, the swollen hydrogels still remain mechanically strong and tough even after immersion in water for 24 h. More significantly, simply changing the post‐crosslinking time can vary the compactness and rigidity of the chitosan network in situ, achieving flexible and efficient modulation of the structures and mechanics of the hybrid DN hydrogels. This study opens up a new horizon in the preparation and regulation of DN hydrogels for promising applications in tissue scaffolds, actuators, and wearable devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Wiley

Highly Elastic and Ultratough Hybrid Ionic–Covalent Hydrogels with Tunable Structures and Mechanics

Loading next page...
 
/lp/wiley/highly-elastic-and-ultratough-hybrid-ionic-covalent-hydrogels-with-E9uLDAxNXF

References (38)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0935-9648
eISSN
1521-4095
DOI
10.1002/adma.201707071
pmid
29577453
Publisher site
See Article on Publisher Site

Abstract

Hybrid ionically–covalently crosslinked double‐network (DN) hydrogels are attracting increasing attention on account of their self‐recovery ability and fatigue resistance, but their relative low mechanical strength and tedious performance adjustment severely limit their applications. Herein, a new strategy to concurrently fabricate hybrid ionic–covalent DN hydrogels and modulate their structures and mechanics is reported, in which an in situ formed chitosan ionic network is incorporated by post‐crosslinking the chitosan‐based composite hydrogel using multivalent anions solutions. The obtained hybrid DN hydrogels exhibit predominant mechanical properties including superior elastic modulus, high tensile strength, and ultrahigh fracture energy because of the more efficient energy dissipation of rigid short‐chain chitosan network. Notably, the swollen hydrogels still remain mechanically strong and tough even after immersion in water for 24 h. More significantly, simply changing the post‐crosslinking time can vary the compactness and rigidity of the chitosan network in situ, achieving flexible and efficient modulation of the structures and mechanics of the hybrid DN hydrogels. This study opens up a new horizon in the preparation and regulation of DN hydrogels for promising applications in tissue scaffolds, actuators, and wearable devices.

Journal

Advanced MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.