Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Drusch, U. Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort, A. Meygret, François Spoto, O. Sy, F. Marchese, P. Bargellini (2012)
Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational ServicesRemote Sensing of Environment, 120
C. Madden, D. Rudnick, Amanda McDonald, Kevin Cunniff, J. Fourqurean (2009)
Ecological indicators for assessing and communicating seagrass status and trends in Florida BayEcological Indicators, 9
M. Lyons, C. Roelfsema, S. Phinn (2013)
Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensingEstuarine Coastal and Shelf Science, 120
T. Harmel, M. Chami, T. Tormos, N. Reynaud, P. Danis (2018)
Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bandsRemote Sensing of Environment, 204
J. Borum, C. Duarte, D. Krause‐Jensen, T. Greve (2004)
European seagrasses: an introduction to monitoring and management
D. Poursanidis, K. Topouzelis, N. Chrysoulakis (2018)
Mapping coastal marine habitats and delineating the deep limits of the Neptune’s seagrass meadows using very high resolution Earth observation dataInternational Journal of Remote Sensing, 39
T. Reusch, J. Dierking, H. Andersson, E. Bonsdorff, J. Carstensen, M. Casini, Mikołaj Czajkowski, B. Hasler, K. Hinsby, K. Hyytiäinen, K. Johannesson, S. Jomaa, V. Jormalainen, H. Kuosa, Sara Kurland, L. Laikre, B. MacKenzie, P. Margonski, F. Melzner, D. Oesterwind, H. Ojaveer, J. Refsgaard, Annica Sandström, G. Schwarz, K. Tonderski, M. Winder, M. Zandersen (2018)
The Baltic Sea as a time machine for the future coastal oceanScience Advances, 4
(2012)
Official Baltic Sea Bathymetry Database. 50 m horizontal spatial resolution
(2017)
Monitoring data of the coastal water measurement site ’Kolberger heide
E. Kovacs, C. Roelfsema, M. Lyons, Shihu Zhao, S. Phinn (2018)
Seagrass habitat mapping: how do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform?Remote Sensing Letters, 9
C. Boström, S. Baden, Anna‐Christina Bockelmann, K. Dromph, S. Fredriksen, C. Gustafsson, D. Krause‐Jensen, T. Möller, S. Nielsen, B. Olesen, J. Olsen, L. Pihl, E. Rinde (2014)
Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservationAquatic Conservation, 24
P. Held, J. Deimling (2019)
New Feature Classes for Acoustic Habitat Mapping—A Multibeam Echosounder Point Cloud Analysis for Mapping Submerged Aquatic Vegetation (SAV)Geosciences
Skipper Seabold, Josef Perktold (2010)
Statsmodels: Econometric and Statistical Modeling with Python
C. Santos, D. Krause‐Jensen, T. Alcoverro, N. Marbà, C. Duarte, M. Katwijk, Marta Pérez, J. Romero, J. Sánchez-Lizaso, G. Roca, E. Jankowska, J. Pérez-Lloréns, J. Fournier, M. Montefalcone, G. Pergent, J. Ruiz, S. Cabaço, Kevan Cook, R. Wilkes, F. Moy, Gregori Trayter, Xavier Arañó, D. Jong, Yolanda Fernández-Torquemada, I. Auby, J. Vergara, Rui Santos (2019)
Recent trend reversal for declining European seagrass meadowsNature Communications, 10
W. Schramm (1996)
The Baltic Sea and Its Transition Zones
Gitta Rönn, K. Krämer, M. Franz, K. Schwarzer, H. Reimers, C. Winter (2021)
Dynamics of Stone Habitats in Coastal Waters of the Southwestern Baltic Sea (Hohwacht Bay)Geosciences, 11
Nathan Thomas, Avi Pertiwi, Dimosthenis Traganos, D. Lagomasino, D. Poursanidis, Shalimar Moreno, T. Fatoyinbo (2020)
Space‐Borne Cloud‐Native Satellite‐Derived Bathymetry (SDB) Models Using ICESat‐2 And Sentinel‐2Geophysical Research Letters, 48
F. Short, T. Carruthers, W. Dennison, M. Waycott (2007)
Global seagrass distribution and diversity: A bioregional modelJournal of Experimental Marine Biology and Ecology, 350
(2016)
Seagrasses
Bijeesh KV, R. Ward, Mariana Lima, M. Stankovic, Phạm Hoài, N. Quang (2020)
Opportunities for seagrass research derived from remote sensing: A review of current methodsEcological Indicators, 117
P. Schubert, W. Hukriede, R. Karez, T. Reusch (2015)
Mapping and modeling eelgrass Zostera marina distribution in the western Baltic SeaMarine Ecology Progress Series, 522
P. Bierwirth, T. Lee, R. Burne (1992)
Shallow sea-floor reflectance and water depth derived by unmixing multispectral imageryPhotogrammetric Engineering and Remote Sensing, 59
(2015)
Untersuchungen zum Einsatz der Laserbathymetrie in der Seevermessung.
R. Orth, Timothy Carruthers, W. Dennison, Carlos Duarte, J. Fourqurean, K. Heck, A. Hughes, G. Kendrick, W. Kenworthy, S. Olyarnik, Frederick Short, M. Waycott, Susan Williams, R. Orth (2006)
A Global Crisis for Seagrass Ecosystems, 56
Int J Appl Earth Obs Geoinformation
T. Malthus (2017)
Bio-optical Modeling and Remote Sensing of Aquatic Macrophytes
M. Gumusay, Tolga Bakirman, İnci Kizilkaya, N. Aykut (2018)
A review of seagrass detection, mapping and monitoring applications using acoustic systemsEuropean Journal of Remote Sensing, 52
S. Kratzer, G. Moore (2018)
Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and OceansRemote. Sens., 10
N. Marbà, D. Krause‐Jensen, T. Alcoverro, S. Birk, A. Pedersen, J. Neto, S. Orfanidis, J. Garmendia, I. Muxika, Á. Borja, K. Dencheva, C. Duarte (2013)
Diversity of European seagrass indicators: patterns within and across regionsHydrobiologia, 704
Dimosthenis Traganos, P. Reinartz (2018)
Machine learning-based retrieval of benthic reflectance and Posidonia oceanica seagrass extent using a semi-analytical inversion of Sentinel-2 satellite dataInternational Journal of Remote Sensing, 39
J. Ramus, J. Kirk (1995)
Light and Photosynthesis in Aquatic EcosystemsBioScience
M. Waycott, C. Duarte, T. Carruthers, R. Orth, W. Dennison, S. Olyarnik, Ainsley Calladine, J. Fourqurean, K. Heck, A. Hughes, G. Kendrick, W. Kenworthy, Frederick Short, Susan Williams (2009)
Accelerating loss of seagrasses across the globe threatens coastal ecosystemsProceedings of the National Academy of Sciences, 106
(2016)
GeoBasis-DE/LVermGeo SH (http:// www.schleswig-holstein.de/DE/GDISH/gdish_node.html) data basis: ATKIS ® -DOP20. Landesamt f ¨ ur Vermessung und Geoinformation Schleswig-Holstein (LVermGeo SH)
(2020)
Pyimpute: Utilities for applying scikit-learn to spatial datasets
(2020)
BONUS ECOMAP – Baltic Sea environmental assessments by innovative opto-acoustic remote sensing, mapping, and monitoring
C. Lovelock, Carlos Duarte (2019)
Dimensions of Blue Carbon and emerging perspectivesBiology Letters, 15
(2020)
Out of the blue — The value of seagrasses to the environment and people
D. Krause‐Jensen, C. Duarte, K. Sand‐Jensen, J. Carstensen (2020)
Century‐long records reveal shifting challenges to seagrass recoveryGlobal Change Biology, 27
Q. Vanhellemont (2019)
Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archivesRemote Sensing of Environment
Kristen Wilson, M. Wong, E. Devred (2020)
Branching Algorithm to Identify Bottom Habitat in the Optically Complex Coastal Waters of Atlantic Canada Using Sentinel-2 Satellite Imagery, 8
Dimosthenis Traganos, P. Reinartz (2017)
Mapping Mediterranean seagrasses with Sentinel-2 imagery.Marine pollution bulletin, 134
A. Ricart, P. York, C. Bryant, M. Rasheed, D. Ierodiaconou, P. Macreadie (2020)
High variability of Blue Carbon storage in seagrass meadows at the estuary scaleScientific Reports, 10
J. Lamb, Jeroen Water, D. Bourne, C. Altier, M. Hein, E. Fiorenza, Nur Abu, J. Jompa, Drew Harvell (2017)
Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebratesScience, 355
G. Casal, X. Monteys, J. Hedley, P. Harris, C. Cahalane, T. McCarthy (2018)
Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 dataInternational Journal of Remote Sensing, 40
A. Stock (2015)
Satellite mapping of Baltic Sea Secchi depth with multiple regression modelsInt. J. Appl. Earth Obs. Geoinformation, 40
M. Zoffoli, P. Gernez, P. Rosa, A. Bris, V. Brando, Anne-Laure Barillé, N. Harin, S. Peters, K. Poser, Lazaros Spaias, G. Peralta, L. Barillé (2020)
Sentinel-2 remote sensing of Zostera noltei-dominated intertidal seagrass meadowsRemote Sensing of Environment, 251
Fabian Pedregosa, G. Varoquaux, Alexandre Gramfort, V. Michel, B. Thirion, O. Grisel, Mathieu Blondel, Gilles Louppe, P. Prettenhofer, Ron Weiss, Ron Weiss, J. Vanderplas, Alexandre Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay (2011)
Scikit-learn: Machine Learning in PythonArXiv, abs/1201.0490
A. Dekker, S. Phinn, J. Anstee, P. Bissett, V. Brando, B. Casey, P. Fearns, J. Hedley, Wojciech Klonowski, Z. Lee, M. Lynch, M. Lyons, C. Mobley, C. Roelfsema (2011)
Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environmentsLimnology and Oceanography: Methods, 9
P. Gege (2017)
Radiative transfer theory for inland waters
P. Snoeijs-Leijonmalm, E. Andrén (2017)
Why is the Baltic Sea so special to live in
Mariana Belgiu, L. Drăguţ (2016)
Random forest in remote sensing: A review of applications and future directionsIsprs Journal of Photogrammetry and Remote Sensing, 114
Algenflora der westlichen Ostsee deutschen Antheils. Eine systematisch-pflanzengeographische Studie
Dimosthenis Traganos, B. Aggarwal, D. Poursanidis, K. Topouzelis, N. Chrysoulakis, P. Reinartz (2018)
Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian SeasRemote. Sens., 10
S. Maritorena, A. Morel, B. Gentili (1994)
Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedoLimnology and Oceanography, 39
C. Boström, E. Jackson, C. Simenstad (2006)
Seagrass landscapes and their effects on associated fauna: A reviewEstuarine Coastal and Shelf Science, 68
Sentinel-2 Seagrass Mapping in the Baltic Sea
R. Carvalho, S. Hamylton, C. Woodroffe (2017)
Filling the ‘white ribbon’ in temperate Australia: A multi-approach method to map the terrestrial-marine interface2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics)
Bierwirth P.N. (1993)
331Photogrammetric Engineering and Remote Sensing, 59
L. McKenzie, L. Nordlund, B. Jones, L. Cullen-Unsworth, C. Roelfsema, R. Unsworth (2020)
The global distribution of seagrass meadowsEnvironmental Research Letters, 15
Seagrass meadows are one of the most important benthic habitats in the Baltic Sea. Nevertheless, spatially continuous mapping data of Zostera marina, the predominant seagrass species in the Baltic Sea, are lacking in the shallow coastal waters. Sentinel‐2 turned out to be valuable for mapping coastal benthic habitats in clear waters, whereas knowledge in turbid waters is rare. Here, we transfer a clear water mapping approach to turbid waters to assess how Sentinel‐2 can contribute to seagrass mapping in the Western Baltic Sea. Sentinel‐2 data were atmospherically corrected using ACOLITE and subsequently corrected for water column effects. To generate a data basis for training and validating random forest classification models, we developed an upscaling approach using video transect data and aerial imagery. We were able to map five coastal benthic habitats: bare sand (25 km²), sand dominated (16 km²), seagrass dominated (7 km²), dense seagrass (25 km²) and mixed substrates with red/ brown algae (3.5 km²) in a study area along the northern German coastline. Validation with independent data pointed out that water column correction does not significantly improve classification results compared to solely atmospherically corrected data (balanced overall accuracies ~0.92). Within optically shallow waters (0–4 m), per class and overall balanced accuracies (>0.82) differed marginally depending on the water depth. Overall balanced accuracy became worse (<0.8) approaching the border to optically deep water (~ 5 m). The spatial resolution of Sentinel‐2 (10–20 m) allowed delineating detailed spatial patterns of seagrass habitats, which may serve as a basis to retrieve spatially continuous data for ecologically relevant metrics such as patchiness. Thus, Sentinel‐2 can contribute unprecedented information for seagrass mapping between 0 and around 5 m water depths in the Western Baltic Sea.
Remote Sensing in Ecology and Conservation – Wiley
Published: Jun 1, 2022
Keywords: Baltic sea; benthic habitat mapping; eelgrass; random forest; Sentinel‐2; submerged aquatic vegetation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.