Access the full text.
Sign up today, get DeepDyve free for 14 days.
This article studies how politicians react to feedback from citizens on social media. We use a reinforcement‐learning framework to model how politicians respond to citizens’ positive feedback by increasing attention to better received issues and allow feedback to vary depending on politicians’ gender. To test the model, we collect 1.5 million tweets published by Spanish MPs over 3 years, identify gender‐issue tweets using a deep‐learning algorithm (BERT) and measure feedback using retweets and likes. We find that citizens provide more positive feedback to female politicians for writing about gender, and that this contributes to their specialization in gender issues. The analysis of mechanisms suggests that female politicians receive more positive feedback because they are treated differently by citizens. To conclude, we discuss implications for representation, misperceptions, and polarization.
American Journal of Political Science – Wiley
Published: Mar 22, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.