Access the full text.
Sign up today, get DeepDyve free for 14 days.
(2008)
Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain
B. Henrissat, G. Davies (1997)
Structural and sequence-based classification of glycoside hydrolases.Current opinion in structural biology, 7 5
R. Weiner, L. Taylor, B. Henrissat, L. Hauser, M. Land, P. Coutinho, C. Rancurel, E. Saunders, A. Longmire, Haitao Zhang, E. Bayer, H. Gilbert, F. Larimer, I. Zhulin, Nathan Ekborg, R. Lamed, P. Richardson, I. Borovok, S. Hutcheson (2008)
Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40TPLoS Genetics, 4
William Beeson, C. Phillips, Jamie Cate, M. Marletta (2012)
Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.Journal of the American Chemical Society, 134 2
Charilaos Xiros, E. Topakas, P. Katapodis, P. Christakopoulos (2008)
Hydrolysis and fermentation of brewer's spent grain by Neurospora crassa.Bioresource technology, 99 13
The crystal
R. Weiner, L. Taylor, B. Henrissat, L. Hauser, M. Land, M. Pedro, Coutinho, C. Rancurel, E. Saunders, A. Longmire, Haitao Zhang, A. Edward, Bayer, H. Gilbert, F. Larimer, I. Zhulin, Nathan Ekborg, R. Lamed, M. Paul, Richardson, I. Borovok, S. Hutcheson (2008)
Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium , Saccharophagus degradans Strain 2-40 T
L. Sukharnikov, B. Cantwell, M. Podar, I. Zhulin (2011)
Cellulases: ambiguous nonhomologous enzymes in a genomic perspective.Trends in biotechnology, 29 10
M. Ballesteros, J. Oliva, M. Negro, P. Manzanares, I. Ballesteros (2004)
Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875Process Biochemistry, 39
S. Mansfield, C. Mooney, J. Saddler (1999)
Substrate and Enzyme Characteristics that Limit Cellulose HydrolysisBiotechnology Progress, 15
Jae-Won Lee, K. Gwak, Jun-Yeong Park, M. Park, D. Choi, Mi Kwon, I. Choi (2007)
Biological pretreatment of softwood Pinus densiflora by three white rot fungi.Journal of microbiology, 45 6
G. Vaaje-Kolstad, B. Westereng, S. Horn, Zhanliang Liu, H. Zhai, M. Sørlie, V. Eijsink (2010)
An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant PolysaccharidesScience, 330
L. Lynd, M. Laser, D. Bransby, B. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J. McMillan, J. Sheehan, C. Wyman (2008)
How biotech can transform biofuelsNature Biotechnology, 26
M. Kuyper, Maurice Toirkens, Jasper Diderich, A. Winkler, J. Dijken, J. Pronk (2005)
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.FEMS yeast research, 5 10
J. Bailey, A. Sburlati, V. Hatzimanikatis, Kelvin Lee, W. Renner, P. Tsai (1996)
Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes.Biotechnology and bioengineering, 79 5
J. Bailey (1991)
Toward a science of metabolic engineeringScience, 252
Klemm Klemm, Heublein Heublein, Fink Fink, Bohn Bohn (2005)
Cellulose: fascinating biopolymer and sustainable raw materialAngew Chem Int Ed, 44
Ke-Ke Cheng, B. Cai, Jian'an Zhang, Hong-zhi Ling, Yujie Zhou, J. Ge, Jing-ming Xu (2008)
Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery processBiochemical Engineering Journal, 38
R. Millati, L. Edebo, M. Taherzadeh (2005)
Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzatesEnzyme and Microbial Technology, 36
Z. Popper, G. Michel, Cécile Hervé, D. Domozych, W. Willats, M. Tuohy, B. Kloareg, D. Stengel (2011)
Evolution and diversity of plant cell walls: from algae to flowering plants.Annual review of plant biology, 62
C. Fontes, H. Gilbert (2010)
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates.Annual review of biochemistry, 79
M. Orencio-Trejo, J. Utrilla, M. Fernández‐Sandoval, G. Huerta-Beristain, G. Gosset, A. Martínez (2010)
Engineering the Escherichia coli fermentative metabolism.Advances in biochemical engineering/biotechnology, 121
A. Ragauskas, Charlotte Williams, B. Davison, George Britovsek, J. Cairney, C. Eckert, W. Frederick, J. Hallett, D. Leak, C. Liotta, J. Mielenz, R. Murphy, R. Templer, T. Tschaplinski (2006)
The Path Forward for Biofuels and BiomaterialsScience, 311
D. Rivers, G. Emert (1987)
Lignocellulose pretreatment: A comparison of wet and dry ball attritionBiotechnology Letters, 9
C. Phillips, William Beeson, Jamie Cate, M. Marletta (2011)
Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.ACS chemical biology, 6 12
Michael Fitzpatrick, P. Champagne, M. Cunningham, R. Whitney (2010)
A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products.Bioresource technology, 101 23
M. Himmel, S. Ding, David Johnson, W. Adney, M. Nimlos, J. Brady, T. Foust (2007)
Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels ProductionScience, 315
Y.‐H.P. Zhang, Jing-Biao Cui, L. Lynd, Lana Kuang (2006)
A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure.Biomacromolecules, 7 2
White White, Brown Brown (1981)
Enzymatic?hydrolysis of cellulose?visual characterization of the processProc Natl Acad Sci USA, 78
Enkai Liu, Yun Hu (2010)
Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptationBiochemical Engineering Journal, 48
(2008)
Cellulases of mesophilic microorganisms— cellulosome and noncellulosome producers
Ramos Ramos (2003)
The chemistry involved in the steam treatment of lignocellulosic materialsQuim Nova, 26
D. Klemm, B. Heublein, H. Fink, A. Bohn (2005)
Cellulose: fascinating biopolymer and sustainable raw material.Angewandte Chemie, 44 22
S. Ha, J. Galazka, S. Kim, Jin-Ho Choi, Xiaoming Yang, Jin-Ho Seo, N. Glass, Jamie Cate, Jamie Cate, Yong‐Su Jin (2010)
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentationProceedings of the National Academy of Sciences, 108
Mihhail Kurašin, Priit Väljamäe (2010)
Processivity of Cellobiohydrolases Is Limited by the Substrate*The Journal of Biological Chemistry, 286
Qian Li, Xinqing Zhao, A. Chang, Qiumei Zhang, F. Bai (2012)
Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production.Metabolic engineering, 14 1
(2010)
Cellulosomes: highly efficient nanomachines designed to designed to deconstruct plant cell wall complex carbohydrates
R. Quinlan, Matthew Sweeney, L. Leggio, Harm Otten, J. Poulsen, K. Johansen, K. Krogh, C. Jørgensen, Morten Tovborg, A. Anthonsen, T. Tryfona, C. Walter, P. Dupree, Feng Xu, G. Davies, P. Walton (2011)
Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass componentsProceedings of the National Academy of Sciences, 108
L. Laopaiboon, Sunan Nuanpeng, P. Srinophakun, P. Klanrit, Pattana Laopaiboon (2009)
Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations.Bioresource technology, 100 18
H. Gilbert (2010)
The Biochemistry and Structural Biology of Plant Cell Wall DeconstructionPlant Physiology, 153
Katty Goossens, R. Willaert (2010)
Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiaeBiotechnology Letters, 32
G. Xie, D. Bruce, J. Challacombe, O. Chertkov, J. Detter, P. Gilna, Cliff Han, S. Lucas, M. Misra, G. Myers, P. Richardson, R. Tapia, Nina Thayer, L. Thompson, T. Brettin, B. Henrissat, D. Wilson, M. McBride (2007)
Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsoniiApplied and Environmental Microbiology, 73
D. Olson, J. Mcbride, A. Shaw, L. Lynd, Jim Liao, Joachim Messing (2012)
Recent progress in consolidated bioprocessing.Current opinion in biotechnology, 23 3
Elisavet Kourtoglou, George Anasontzis, D. Mamma, E. Topakas, D. Hatzinikolaou, P. Christakopoulos (2011)
Constitutive expression, purification and characterization of a phosphoglucomutase from Fusarium oxysporum.Enzyme and microbial technology, 48 3
Ha Ha, Galazka Galazka, Kim Kim, Choi Choi, Yang Yang, Seo Seo, Glass Glass, Cate Cate, Jin Jin (2011)
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentationProc Natl Acad Sci USA, 108
Qi Xu, Arjun Singh, M. Himmel (2009)
Perspectives and New Directions for the Production of Bioethanol Using Consolidated Bioprocessing of LignocelluloseChemInform, 40
Zhen Cai, Bosen Zhang, Yin Li (2012)
Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectivesBiotechnology Journal, 7
D. Olson, Shital Tripathi, R. Giannone, Jonathan Lo, N. Caiazza, D. Hogsett, R. Hettich, A. Guss, Genia Dubrovsky, L. Lynd (2010)
Deletion of the Cel48S cellulase from Clostridium thermocellumProceedings of the National Academy of Sciences, 107
M. Dimarogona, E. Topakas, L. Olsson, P. Christakopoulos (2012)
Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile.Bioresource technology, 110
G. Cheng, P. Varanasi, Chenlin Li, Hanbin Liu, Y. Melnichenko, B. Simmons, M. Kent, Seema Singh (2011)
Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.Biomacromolecules, 12 4
Y. Matano, T. Hasunuma, A. Kondo (2012)
Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass.Bioresource technology, 108
Olson Olson, Tripathi Tripathi, Giannone Giannone, Lo Lo, Caiazza Caiazza, Hogsett Hogsett, Hettich Hettich, Guss Guss, Dubrovsky Dubrovsky, Lynd Lynd (2010)
Deletion of the Cel48S cellulase from Clostridium thermocellumProc Natl Acad Sci USA, 107
O. Shoseyov, Z. Shani, Ilan Levy (2006)
Carbohydrate Binding Modules: Biochemical Properties and Novel ApplicationsMicrobiology and Molecular Biology Reviews, 70
H. Jørgensen, Jakob Vibe-Pedersen, Jan Larsen, C. Felby (2007)
Liquefaction of lignocellulose at high‐solids concentrationsBiotechnology and Bioengineering, 96
Xu Xu, Singh Singh, Himmel Himmel (2009)
Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocelluloseCurr Opin Biotechnol, 20
Sandeep Dhaliwal, H. Oberoi, S. Sandhu, D. Nanda, Dinesh Kumar, S. Uppal (2011)
Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii.Bioresource technology, 102 10
P. Alzari, H. Souchon, R. Dominguez (1996)
The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum.Structure, 4 3
T. Hasunuma, Tomoya Sanda, Ryosuke Yamada, K. Yoshimura, Jun Ishii, A. Kondo (2011)
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiaeMicrobial Cell Factories, 10
E. Yoshida, Masafumi Hidaka, S. Fushinobu, T. Koyanagi, Hiromichi Minami, H. Tamaki, M. Kitaoka, T. Katayama, H. Kumagai (2010)
Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus.The Biochemical journal, 431 1
K. Okamoto, Y. Nitta, N. Maekawa, H. Yanase (2011)
Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta.Enzyme and microbial technology, 48 3
R. Chatterjee, C. Millard, K. Champion, D. Clark, M. Donnelly (2001)
Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose byEscherichia coliApplied and Environmental Microbiology, 67
J. Bozell, G. Petersen (2010)
Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisitedGreen Chemistry, 12
J. Langston, T. Shaghasi, E. Abbate, Feng Xu, E. Vlasenko, Matthew Sweeney (2011)
Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61Applied and Environmental Microbiology, 77
Zarah Forsberg, G. Vaaje-Kolstad, B. Westereng, Anne Bunæs, Y. Stenstrøm, A. Mackenzie, M. Sørlie, S. Horn, V. Eijsink (2011)
Cleavage of cellulose by a CBM33 proteinProtein Science, 20
(2013)
Direct ethanol production from starch, wheat bran and 652 Volume 2, November /December
Anders Wingren, M. Galbe, G. Zacchi (2008)
Techno‐Economic Evaluation of Producing Ethanol from Softwood: Comparison of SSF and SHF and Identification of BottlenecksBiotechnology Progress, 19
K. Hoyer, M. Galbe, G. Zacchi (2010)
Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matterBiotechnology for Biofuels, 3
H. Ruiz, D. Silva, D. Ruzene, Luís Lima, A. Vicente, J. Teixeira (2012)
Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditionsFuel, 95
F. Medie, G. Davies, M. Drancourt, B. Henrissat (2012)
Genome analyses highlight the different biological roles of cellulasesNature Reviews Microbiology, 10
W. Zhou, H. Schüttler, Zhiqian Hao, Ying Xu (2009)
Cellulose hydrolysis in evolving substrate morphologies I: A general modeling formalismBiotechnology and Bioengineering, 104
J. Brás, A. Cartmell, A. Carvalho, Genny Verzé, E. Bayer, Yael Vazana, Márcia Correia, J. Prates, Supriya Ratnaparkhe, A. Boraston, M. Romão, C. Fontes, H. Gilbert (2011)
Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysisProceedings of the National Academy of Sciences, 108
Y. Kitago, S. Karita, N. Watanabe, M. Kamiya, T. Aizawa, K. Sakka, I. Tanaka (2007)
Crystal Structure of Cel44A, a Glycoside Hydrolase Family 44 Endoglucanase from Clostridium thermocellum*Journal of Biological Chemistry, 282
Quinlan Quinlan, Sweeney Sweeney, Lo Leggio Lo Leggio, Otten Otten, Poulsen Poulsen, Johansen Johansen, Krogh Krogh, Jorgensen Jorgensen, Tovborg Tovborg, Anthonsen Anthonsen (2011)
Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass componentsProc Natl Acad Sci USA, 108
Yasuya Fujita, J. Ito, M. Ueda, H. Fukuda, A. Kondo (2004)
Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic EnzymeApplied and Environmental Microbiology, 70
(2008)
Biotechnology for Biofuels BioMed Central Review
S. Karkehabadi, H. Hansson, Steve Kim, K. Piens, C. Mitchinson, M. Sandgren (2008)
The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution.Journal of molecular biology, 383 1
J. Sakon, D. Irwin, David Wilson, P. Karplus (1997)
Structure and mechanism of endo/exocellulase E4 from Thermomonospora fuscaNature Structural Biology, 4
C. Martínez-Fleites, C. Guerreiro, Martin Baumann, E. Taylor, J. Prates, L. Ferreira, C. Fontes, H. Brumer, G. Davies (2006)
Crystal Structures of Clostridium thermocellum Xyloglucanase, XGH74A, Reveal the Structural Basis for Xyloglucan Recognition and Degradation*Journal of Biological Chemistry, 281
Ichiro Kamei, Yoshiyuki Hirota, Toshio Mori, Hirofumi Hirai, S. Meguro, R. Kondo (2012)
Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60.Bioresource technology, 112
Alan White, R. Brown (1981)
Enzymatic hydrolysis of cellulose: Visual characterization of the process.Proceedings of the National Academy of Sciences of the United States of America, 78 2
E. Bayer, R. Lamed, B. White, H. Flint (2008)
From cellulosomes to cellulosomics.Chemical record, 8 6
G. Panagiotou, P. Christakopoulos, L. Olsson (2005)
Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profilingEnzyme and Microbial Technology, 36
L. Lynd, P. Weimer, W. Zyl, I. Pretorius (2002)
Microbial Cellulose Utilization: Fundamentals and BiotechnologyMicrobiology and Molecular Biology Reviews, 66
M. Sandgren, Andrew Shaw, Traci Ropp, Shan Wu, Richard Bott, Alexander Cameron, J. Ståhlberg, C. Mitchinson, T. Jones (2001)
The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution.Journal of molecular biology, 308 2
B. Oud, A. Maris, J. Daran, J. Pronk (2012)
Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeastFems Yeast Research, 12
Jeong-Sun Seo, H. Chong, Hyun Park, Kyoung-Oh Yoon, Chol-hee Jung, Jae Kim, Jin-Han Hong, Hyungtae Kim, J. Kim, Joon-Il Kil, Cheolju Park, H. Oh, Jung-Soon Lee, Su Jin, Hyejin Um, H. Lee, S. Oh, Jae Kim, Hyung‐Lyun Kang, Se Lee, Kye-Joon Lee, H. Kang (2005)
The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4Nature Biotechnology, 23
A. Gusakov, A. Sinitsyn, T. Salanovich, F. Bukhtojarov, A. Markov, B. Ustinov, C. Zeijl, P. Punt, R. Burlingame (2005)
Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain ofEnzyme and Microbial Technology
B. Watson, Haitao Zhang, A. Longmire, Y. Moon, S. Hutcheson (2009)
Processive Endoglucanases Mediate Degradation of Cellulose by Saccharophagus degradansJournal of Bacteriology, 191
M. Omelchenko, Michael Galperin, Y. Wolf, E. Koonin (2010)
Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolutionBiology Direct, 5
B. Cantarel, P. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat (2008)
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for GlycogenomicsNucleic Acids Research, 37
Neil Parry, David Beever, Emyr Owen, Isabel Vandenberghe, Jozef BEEUMEN, M. Bhat (2001)
Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus.The Biochemical journal, 353 Pt 1
G. Sprenger (1996)
Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routesFems Microbiology Letters, 145
G. Beckham, Y. Bomble, E. Bayer, M. Himmel, M. Crowley (2011)
Applications of computational science for understanding enzymatic deconstruction of cellulose.Current opinion in biotechnology, 22 2
M. Gruno, Priit Väljamäe, G. Pettersson, G. Johansson (2004)
Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrateBiotechnology and Bioengineering, 86
Gusakov Gusakov, Sinitsyn Sinitsyn, Salanovich Salanovich, Bukhtojarov Bukhtojarov, Markov Markov, Ustinov Ustinov, van Zeijl van Zeijl, Punt Punt, Burlingame Burlingame (2005)
Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowenseEnzyme Microb Technol, 36
D. Stanley, P. Chambers, G. Stanley, A. Borneman, S. Fraser (2010)
Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiaeApplied Microbiology and Biotechnology, 88
Boaz Laadan, J. Almeida, P. Rådström, B. Hahn‐hägerdal, M. Gorwa-Grauslund (2008)
Identification of an NADH‐dependent 5‐hydroxymethylfurfural‐reducing alcohol dehydrogenase in Saccharomyces cerevisiaeYeast, 25
B. Alriksson, Adnan Cavka, L. Jönsson (2011)
Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents.Bioresource technology, 102 2
M. Buckeridge, G. Goldman (2011)
Routes to cellulosic ethanol
S. Mussatto, G. Dragone, P. Guimarães, J. Silva, L. Carneiro, I. Roberto, A. Vicente, L. Domingues, J. Teixeira (2010)
Technological trends, global market, and challenges of bio-ethanol production.Biotechnology advances, 28 6
Shunichi Nakayama, Tomotake Morita, H. Negishi, T. Ikegami, K. Sakaki, D. Kitamoto (2008)
Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation.FEMS yeast research, 8 5
Youngnyun Kim, L. Ingram, K. Shanmugam (2007)
Construction of an Escherichia coli K-12 Mutant for Homoethanologenic Fermentation of Glucose or Xylose without Foreign GenesApplied and Environmental Microbiology, 73
L. Ramos (2003)
The chemistry involved in the steam treatment of lignocellulosic materialsQuímica Nova, 26
Simone Brethauer, C. Wyman (2010)
Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.Bioresource technology, 101 13
A. Kondo, M. Ueda (2004)
Yeast cell-surface display—applications of molecular displayApplied Microbiology and Biotechnology, 64
Frank Agbogbo, Guillermo Coward-Kelly (2008)
Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitisBiotechnology Letters, 30
G. Davies, S. Tolley, B. Henrissat, C. Hjort, M. Schulein (1995)
Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution.Biochemistry, 34 49
P. Harris, D. Welner, K. Mcfarland, E. Re, J. Poulsen, K. Brown, R. Salbo, H. Ding, E. Vlasenko, Sandy Merino, Feng Xu, J. Cherry, S. Larsen, L. Leggio (2010)
Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family.Biochemistry, 49 15
W. Xiao, W. Clarkson (2004)
Acid solubilization of lignin and bioconversion of treated newsprint to methaneBiodegradation, 8
Olofsson Olofsson, Bertilsson Bertilsson, Liden Liden (2008)
A short review on SSF ?an interesting process option for ethanol production from lignocellulosic feedstocksBiotechnol Biofuels, 1
J. Wright, E. Bellissimi, Erik Hulster, A. Wagner, J. Pronk, A. Maris (2011)
Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.FEMS yeast research, 11 3
D. Stevenson, P. Weimer (2002)
Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanolApplied Microbiology and Biotechnology, 59
A. Koivula, T. Kinnari, V. Harjunpää, L. Ruohonen, A. Teleman, T. Drakenberg, J. Rouvinen, T. Jones, T. Teeri (1998)
Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6AFEBS Letters, 429
Shuhei Yanase, T. Hasunuma, Ryosuke Yamada, Tsutomu Tanaka, C. Ogino, H. Fukuda, A. Kondo (2010)
Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymesApplied Microbiology and Biotechnology, 88
A. Gusakov (2011)
Alternatives to Trichoderma reesei in biofuel production.Trends in biotechnology, 29 9
C. Hamelinck, Geertje Hooijdonk, A. Faaij (2005)
Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-termBiomass & Bioenergy, 28
S. Ding, M. Himmel (2006)
The maize primary cell wall microfibril: a new model derived from direct visualization.Journal of agricultural and food chemistry, 54 3
J. Almeida, T. Modig, Anneli Petersson, B. Hahn‐hägerdal, G. Lidén, M. Gorwa-Grauslund (2007)
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiaeJournal of Chemical Technology & Biotechnology, 82
E. Miller, Laura Jarboe, L. Yomano, S. York, K. Shanmugam, L. Ingram (2009)
Silencing of NADPH-Dependent Oxidoreductase Genes (yqhD and dkgA) in Furfural-Resistant Ethanologenic Escherichia coliApplied and Environmental Microbiology, 75
Karin Ohgren, Oskar Bengtsson, M. Gorwa-Grauslund, M. Galbe, B. Hahn‐hägerdal, G. Zacchi (2006)
Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.Journal of biotechnology, 126 4
Brás Brás, Cartmell Cartmell, Carvalho Carvalho, Verze Verze, Bayer Bayer, Vazana Vazana, Correia Correia, Prates Prates, Ratnaparkhe Ratnaparkhe, Boraston Boraston (2011)
Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysisProc Natl Acad Sci USA, 108
Y.‐H. Zhang, M. Himmel, J. Mielenz (2006)
Outlook for cellulase improvement: screening and selection strategies.Biotechnology advances, 24 5
G. Davies, Andrzej Brzozowski, M. Dauter, A. Varrot, M. Schülein (2000)
Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution.The Biochemical journal, 348 Pt 1
By Conchie, A. Gelman, G. Levvy, Rouett (1962)
Inhibition of glycosidases by aldonolactones of corresponding configuration.The Biochemical journal, 65 2
C. Skory, S. Freer, R. Bothast (1997)
Screening for ethanol-producing filamentous fungiBiotechnology Letters, 19
Xuejun Pan, Dan Xie, K. Kang, Seung-Lak Yoon, J. Saddler (2007)
Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substratesApplied Biochemistry and Biotechnology, 137-140
M. Bhat (2000)
Cellulases and related enzymes in biotechnology.Biotechnology advances, 18 5
Second‐generation bioethanol produced from various lignocellulosic materials, such as wood, agricultural, or forest residues, has the potential to be a valuable substitute for, or a complement to, gasoline. At least three major factors—rapidly increasing atmospheric CO2 levels, dwindling fossil fuel reserves, and their rising costs—suggest that we now need to accelerate research plans to make greater use of plant‐based biomass for energy production and as a chemical feedstock as part of a sustainable energy economy. Optimizing the production of bioethanol to be competitive with petrochemical fuels is the main challenge for the underlying process development. The exhaustive research on enzyme technology during the latest years, resulting in significant advances in the field, show the importance of the enzymatic hydrolysis for a profitable ethanol production process. On the other hand, the persisting challenges in biomass pretreatment, which are the initial steps in most process designs, show the remarkable recalcitrance of the lignocellulosic materials to biological degradation. The recent scientific trends show toward an integrated overall bioconversion process in which fermentation technology and genetic engineering of ethanologenic microorganisms aim not only at maximizing yields and productivities but also at widening the range of fermentation products and applications.
Wiley Interdisciplinary Reviews: Energy and Environment – Wiley
Published: Nov 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.